How Two Cooperating Robot Swarms Are Affected by Two Conflictive Aggregation Spots View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Michael Bodi , Ronald Thenius , Thomas Schmickl , Karl Crailsheim

ABSTRACT

Previous studies showed that two swarms of autonomous robots pursuing two conflicting goals can cooperate efficiently, especially at small swarm sizes. In this study we investigate how the spatial separation of the two conflictive aggregation spots affect the cooperation behaviour. The swarms are controlled by the BEECLUST algorithm, which is a robot control algorithm inspired by honeybee behaviour. We found that the spatial separation of the optima does not affect the aggregation efficiency of swarm sizes of 9 individuals or more. In contrast smaller cooperating swarms take advantage in their aggregation efficiency. Heterogeneous swarms are a big challenge in swarm robotics. When several tasks have to be achieved in parallel, swarms have to split up in task-related sub-swarms. Then efficiency enhancement by cooperation and the exploitation of side effects are a successful recipe for developing swarm intelligent algorithms. More... »

PAGES

367-374

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-21314-4_46

DOI

http://dx.doi.org/10.1007/978-3-642-21314-4_46

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046957226


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Artificial Life Laboratory of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, A-8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5110.5", 
          "name": [
            "Artificial Life Laboratory of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bodi", 
        "givenName": "Michael", 
        "id": "sg:person.014071700715.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071700715.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Artificial Life Laboratory of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, A-8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5110.5", 
          "name": [
            "Artificial Life Laboratory of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thenius", 
        "givenName": "Ronald", 
        "id": "sg:person.01135755405.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135755405.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Artificial Life Laboratory of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, A-8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5110.5", 
          "name": [
            "Artificial Life Laboratory of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmickl", 
        "givenName": "Thomas", 
        "id": "sg:person.07417426760.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417426760.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Artificial Life Laboratory of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, A-8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5110.5", 
          "name": [
            "Artificial Life Laboratory of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crailsheim", 
        "givenName": "Karl", 
        "id": "sg:person.01366315645.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366315645.25"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Previous studies showed that two swarms of autonomous robots pursuing two conflicting goals can cooperate efficiently, especially at small swarm sizes. In this study we investigate how the spatial separation of the two conflictive aggregation spots affect the cooperation behaviour. The swarms are controlled by the BEECLUST algorithm, which is a robot control algorithm inspired by honeybee behaviour. We found that the spatial separation of the optima does not affect the aggregation efficiency of swarm sizes of 9 individuals or more. In contrast smaller cooperating swarms take advantage in their aggregation efficiency. Heterogeneous swarms are a big challenge in swarm robotics. When several tasks have to be achieved in parallel, swarms have to split up in task-related sub-swarms. Then efficiency enhancement by cooperation and the exploitation of side effects are a successful recipe for developing swarm intelligent algorithms.", 
    "editor": [
      {
        "familyName": "Kampis", 
        "givenName": "George", 
        "type": "Person"
      }, 
      {
        "familyName": "Karsai", 
        "givenName": "Istv\u00e1n", 
        "type": "Person"
      }, 
      {
        "familyName": "Szathm\u00e1ry", 
        "givenName": "E\u00f6rs", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-21314-4_46", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-21313-7", 
        "978-3-642-21314-4"
      ], 
      "name": "Advances in Artificial Life. Darwin Meets von Neumann", 
      "type": "Book"
    }, 
    "keywords": [
      "swarm size", 
      "robot control algorithms", 
      "small swarm sizes", 
      "swarm intelligent algorithm", 
      "aggregation efficiency", 
      "swarm robotics", 
      "robot swarms", 
      "autonomous robots", 
      "BEECLUST algorithm", 
      "heterogeneous swarm", 
      "intelligent algorithm", 
      "algorithm", 
      "swarm", 
      "big challenge", 
      "control algorithm", 
      "cooperation behavior", 
      "successful recipe", 
      "robot", 
      "robotics", 
      "honeybee behavior", 
      "task", 
      "efficiency", 
      "challenges", 
      "advantages", 
      "goal", 
      "optimum", 
      "cooperation", 
      "exploitation", 
      "parallel", 
      "behavior", 
      "size", 
      "efficiency enhancement", 
      "recipes", 
      "spots", 
      "enhancement", 
      "previous studies", 
      "study", 
      "spatial separation", 
      "individuals", 
      "separation", 
      "contrast", 
      "effect", 
      "side effects"
    ], 
    "name": "How Two Cooperating Robot Swarms Are Affected by Two Conflictive Aggregation Spots", 
    "pagination": "367-374", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046957226"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-21314-4_46"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-21314-4_46", 
      "https://app.dimensions.ai/details/publication/pub.1046957226"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_297.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-21314-4_46"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21314-4_46'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21314-4_46'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21314-4_46'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21314-4_46'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      22 PREDICATES      68 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-21314-4_46 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndcaca073faca49fbb7c52180a65f8bfe
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description Previous studies showed that two swarms of autonomous robots pursuing two conflicting goals can cooperate efficiently, especially at small swarm sizes. In this study we investigate how the spatial separation of the two conflictive aggregation spots affect the cooperation behaviour. The swarms are controlled by the BEECLUST algorithm, which is a robot control algorithm inspired by honeybee behaviour. We found that the spatial separation of the optima does not affect the aggregation efficiency of swarm sizes of 9 individuals or more. In contrast smaller cooperating swarms take advantage in their aggregation efficiency. Heterogeneous swarms are a big challenge in swarm robotics. When several tasks have to be achieved in parallel, swarms have to split up in task-related sub-swarms. Then efficiency enhancement by cooperation and the exploitation of side effects are a successful recipe for developing swarm intelligent algorithms.
7 schema:editor Nb3ca650ba95c4772b054e5bdece8bf30
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne4e1bcc2327049c19955a477a75f837e
11 schema:keywords BEECLUST algorithm
12 advantages
13 aggregation efficiency
14 algorithm
15 autonomous robots
16 behavior
17 big challenge
18 challenges
19 contrast
20 control algorithm
21 cooperation
22 cooperation behavior
23 effect
24 efficiency
25 efficiency enhancement
26 enhancement
27 exploitation
28 goal
29 heterogeneous swarm
30 honeybee behavior
31 individuals
32 intelligent algorithm
33 optimum
34 parallel
35 previous studies
36 recipes
37 robot
38 robot control algorithms
39 robot swarms
40 robotics
41 separation
42 side effects
43 size
44 small swarm sizes
45 spatial separation
46 spots
47 study
48 successful recipe
49 swarm
50 swarm intelligent algorithm
51 swarm robotics
52 swarm size
53 task
54 schema:name How Two Cooperating Robot Swarms Are Affected by Two Conflictive Aggregation Spots
55 schema:pagination 367-374
56 schema:productId N189a2d03c8984f20a7715383df9a2b75
57 N8320d7d8d4fd49818b2399d37458dfd5
58 schema:publisher N3c2ee2ac8a7345f3b1842ab124a70f06
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046957226
60 https://doi.org/10.1007/978-3-642-21314-4_46
61 schema:sdDatePublished 2022-12-01T06:50
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nb6a00605a4664f4b88d83877c06db0ab
64 schema:url https://doi.org/10.1007/978-3-642-21314-4_46
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N189a2d03c8984f20a7715383df9a2b75 schema:name doi
69 schema:value 10.1007/978-3-642-21314-4_46
70 rdf:type schema:PropertyValue
71 N25c0b23de8bc480fa01fbb65f3d6ae99 rdf:first N7408d8c1a01e4c6295fa153f36d6b985
72 rdf:rest N8dcc17fe0323408789e4c9f78f98d854
73 N2907a5c814ec4f68b665cacb9777d774 schema:familyName Kampis
74 schema:givenName George
75 rdf:type schema:Person
76 N3c2ee2ac8a7345f3b1842ab124a70f06 schema:name Springer Nature
77 rdf:type schema:Organisation
78 N6558126854614106952b4ec17d8249e3 rdf:first sg:person.01135755405.01
79 rdf:rest N8724b9235ea44460bc26436479a195df
80 N7408d8c1a01e4c6295fa153f36d6b985 schema:familyName Karsai
81 schema:givenName István
82 rdf:type schema:Person
83 N8320d7d8d4fd49818b2399d37458dfd5 schema:name dimensions_id
84 schema:value pub.1046957226
85 rdf:type schema:PropertyValue
86 N8724b9235ea44460bc26436479a195df rdf:first sg:person.07417426760.84
87 rdf:rest Ne729a60a2ced4f568bc297c88cd97cbf
88 N8dcc17fe0323408789e4c9f78f98d854 rdf:first Ncfc3f53826b344d69dbd59a24151abc5
89 rdf:rest rdf:nil
90 Nb3ca650ba95c4772b054e5bdece8bf30 rdf:first N2907a5c814ec4f68b665cacb9777d774
91 rdf:rest N25c0b23de8bc480fa01fbb65f3d6ae99
92 Nb6a00605a4664f4b88d83877c06db0ab schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Ncfc3f53826b344d69dbd59a24151abc5 schema:familyName Szathmáry
95 schema:givenName Eörs
96 rdf:type schema:Person
97 Ndcaca073faca49fbb7c52180a65f8bfe rdf:first sg:person.014071700715.95
98 rdf:rest N6558126854614106952b4ec17d8249e3
99 Ne4e1bcc2327049c19955a477a75f837e schema:isbn 978-3-642-21313-7
100 978-3-642-21314-4
101 schema:name Advances in Artificial Life. Darwin Meets von Neumann
102 rdf:type schema:Book
103 Ne729a60a2ced4f568bc297c88cd97cbf rdf:first sg:person.01366315645.25
104 rdf:rest rdf:nil
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
109 schema:name Artificial Intelligence and Image Processing
110 rdf:type schema:DefinedTerm
111 sg:person.01135755405.01 schema:affiliation grid-institutes:grid.5110.5
112 schema:familyName Thenius
113 schema:givenName Ronald
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135755405.01
115 rdf:type schema:Person
116 sg:person.01366315645.25 schema:affiliation grid-institutes:grid.5110.5
117 schema:familyName Crailsheim
118 schema:givenName Karl
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366315645.25
120 rdf:type schema:Person
121 sg:person.014071700715.95 schema:affiliation grid-institutes:grid.5110.5
122 schema:familyName Bodi
123 schema:givenName Michael
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071700715.95
125 rdf:type schema:Person
126 sg:person.07417426760.84 schema:affiliation grid-institutes:grid.5110.5
127 schema:familyName Schmickl
128 schema:givenName Thomas
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417426760.84
130 rdf:type schema:Person
131 grid-institutes:grid.5110.5 schema:alternateName Artificial Life Laboratory of the Department of Zoology, Karl-Franzens University Graz, Universitätsplatz 2, A-8010, Graz, Austria
132 schema:name Artificial Life Laboratory of the Department of Zoology, Karl-Franzens University Graz, Universitätsplatz 2, A-8010, Graz, Austria
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...