An Study of the Tree Generation Algorithms in Equation Based Model Learning with Low Quality Data View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011

AUTHORS

Alba Berzosa , José R. Villar , Javier Sedano , Marco García-Tamargo , Enrique de la Cal

ABSTRACT

The undesired effects of data gathered from real world can be produced by the noise in the process, the bias of the sensors and the presence of hysteresis, among other uncertainty sources. In previous works the learning models using the so-called Low Quality Data (LQD) has been studied in order to analyze the way to represent the uncertainty. It makes use of genetic programming and the multiobjective simmulated annealing heuristic, which has been hybridized with genetic operators. The role of the tree generation methods when learning LQD was studied in that paper. The present work deals with the analysis of the generation methods relevance in depth and provides with statistical studies on the obtained results. More... »

PAGES

84-91

References to SciGraph publications

Book

TITLE

Hybrid Artificial Intelligent Systems

ISBN

978-3-642-21221-5
978-3-642-21222-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-21222-2_11

DOI

http://dx.doi.org/10.1007/978-3-642-21222-2_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050761615


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technological Institute of Castilla y Le\u00f3n", 
          "id": "https://www.grid.ac/institutes/grid.493418.3", 
          "name": [
            "Instituto Tecnol\u00f3gico de Castilla y Le\u00f3n, Lopez Bravo 70, Pol. Ind. Villalonqu\u00e9jar, 09001\u00a0Burgos, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berzosa", 
        "givenName": "Alba", 
        "id": "sg:person.015437057771.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437057771.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Computer Science Department, University of Oviedo, Campus de Viesques s/n, 33204\u00a0Gij\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villar", 
        "givenName": "Jos\u00e9 R.", 
        "id": "sg:person.015655732472.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655732472.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological Institute of Castilla y Le\u00f3n", 
          "id": "https://www.grid.ac/institutes/grid.493418.3", 
          "name": [
            "Instituto Tecnol\u00f3gico de Castilla y Le\u00f3n, Lopez Bravo 70, Pol. Ind. Villalonqu\u00e9jar, 09001\u00a0Burgos, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedano", 
        "givenName": "Javier", 
        "id": "sg:person.012345130667.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345130667.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Computer Science Department, University of Oviedo, Campus de Viesques s/n, 33204\u00a0Gij\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Tamargo", 
        "givenName": "Marco", 
        "id": "sg:person.013502106005.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013502106005.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Computer Science Department, University of Oviedo, Campus de Viesques s/n, 33204\u00a0Gij\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de la Cal", 
        "givenName": "Enrique", 
        "id": "sg:person.016056436767.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056436767.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-13769-3_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012401049", 
          "https://doi.org/10.1007/978-3-642-13769-3_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13769-3_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012401049", 
          "https://doi.org/10.1007/978-3-642-13769-3_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-008-0323-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013193478", 
          "https://doi.org/10.1007/s00500-008-0323-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-009-0414-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013532274", 
          "https://doi.org/10.1007/s00500-009-0414-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-009-0414-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013532274", 
          "https://doi.org/10.1007/s00500-009-0414-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-009-0414-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013532274", 
          "https://doi.org/10.1007/s00500-009-0414-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.simpat.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042493112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijar.2008.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044359442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2010.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045297253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-19644-7_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048232340", 
          "https://doi.org/10.1007/978-3-642-19644-7_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-19644-7_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048232340", 
          "https://doi.org/10.1007/978-3-642-19644-7_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.autcon.2005.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048754308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.autcon.2005.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048754308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2009.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052077331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.873237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ica-2009-0302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105810305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ica-2010-0337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105812170"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "The undesired effects of data gathered from real world can be produced by the noise in the process, the bias of the sensors and the presence of hysteresis, among other uncertainty sources. In previous works the learning models using the so-called Low Quality Data (LQD) has been studied in order to analyze the way to represent the uncertainty. It makes use of genetic programming and the multiobjective simmulated annealing heuristic, which has been hybridized with genetic operators. The role of the tree generation methods when learning LQD was studied in that paper. The present work deals with the analysis of the generation methods relevance in depth and provides with statistical studies on the obtained results.", 
    "editor": [
      {
        "familyName": "Corchado", 
        "givenName": "Emilio", 
        "type": "Person"
      }, 
      {
        "familyName": "Kurzy\u0144ski", 
        "givenName": "Marek", 
        "type": "Person"
      }, 
      {
        "familyName": "Wo\u017aniak", 
        "givenName": "Micha\u0142", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-21222-2_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-21221-5", 
        "978-3-642-21222-2"
      ], 
      "name": "Hybrid Artificial Intelligent Systems", 
      "type": "Book"
    }, 
    "name": "An Study of the Tree Generation Algorithms in Equation Based Model Learning with Low Quality Data", 
    "pagination": "84-91", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-21222-2_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f1cedb7fda7e353271c89fb9512ed0d23820a8329d48ba71e1922ce536d35dfc"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050761615"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-21222-2_11", 
      "https://app.dimensions.ai/details/publication/pub.1050761615"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000595.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-21222-2_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21222-2_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21222-2_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21222-2_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21222-2_11'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-21222-2_11 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N7e17caf2784c454d962430e63035a20d
4 schema:citation sg:pub.10.1007/978-3-642-13769-3_51
5 sg:pub.10.1007/978-3-642-19644-7_10
6 sg:pub.10.1007/s00500-008-0323-y
7 sg:pub.10.1007/s00500-009-0414-4
8 https://doi.org/10.1016/j.apenergy.2009.07.002
9 https://doi.org/10.1016/j.asoc.2010.07.002
10 https://doi.org/10.1016/j.autcon.2005.01.007
11 https://doi.org/10.1016/j.ijar.2008.06.005
12 https://doi.org/10.1016/j.simpat.2009.10.003
13 https://doi.org/10.1109/4235.873237
14 https://doi.org/10.3233/ica-2009-0302
15 https://doi.org/10.3233/ica-2010-0337
16 schema:datePublished 2011
17 schema:datePublishedReg 2011-01-01
18 schema:description The undesired effects of data gathered from real world can be produced by the noise in the process, the bias of the sensors and the presence of hysteresis, among other uncertainty sources. In previous works the learning models using the so-called Low Quality Data (LQD) has been studied in order to analyze the way to represent the uncertainty. It makes use of genetic programming and the multiobjective simmulated annealing heuristic, which has been hybridized with genetic operators. The role of the tree generation methods when learning LQD was studied in that paper. The present work deals with the analysis of the generation methods relevance in depth and provides with statistical studies on the obtained results.
19 schema:editor N9ebdf2b26fc5432eae22e29588a1e5a0
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N8ac6f95c397f45d4bbedcf43de6d7a1a
24 schema:name An Study of the Tree Generation Algorithms in Equation Based Model Learning with Low Quality Data
25 schema:pagination 84-91
26 schema:productId N06ade9d9c1fb441bb558211e68f1256e
27 N306ef5ac93f045e08f976481b63d2f87
28 Ne9534dcf32b54914ab2eb45d73a3e079
29 schema:publisher N29e893f4c3ce4002be179fbf842471d0
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050761615
31 https://doi.org/10.1007/978-3-642-21222-2_11
32 schema:sdDatePublished 2019-04-15T22:37
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N0b2979cef9d04459909c2b72aa93a5a4
35 schema:url http://link.springer.com/10.1007/978-3-642-21222-2_11
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N06ade9d9c1fb441bb558211e68f1256e schema:name readcube_id
40 schema:value f1cedb7fda7e353271c89fb9512ed0d23820a8329d48ba71e1922ce536d35dfc
41 rdf:type schema:PropertyValue
42 N0b2979cef9d04459909c2b72aa93a5a4 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N29e893f4c3ce4002be179fbf842471d0 schema:location Berlin, Heidelberg
45 schema:name Springer Berlin Heidelberg
46 rdf:type schema:Organisation
47 N306ef5ac93f045e08f976481b63d2f87 schema:name doi
48 schema:value 10.1007/978-3-642-21222-2_11
49 rdf:type schema:PropertyValue
50 N3a632c89eaa740c2b290bce91c3949bf schema:familyName Woźniak
51 schema:givenName Michał
52 rdf:type schema:Person
53 N4de9f26d7f8948888ed41b8422ed15c2 rdf:first sg:person.015655732472.57
54 rdf:rest N67d5ed73766d4cd8b52db2f2bf3dd48b
55 N5165b7cb62dc4053bedffcec3ab06911 rdf:first N58acff7e199d44118e7a92dbb16650a0
56 rdf:rest Na110414e7ab8417ab713af8dba670f75
57 N58acff7e199d44118e7a92dbb16650a0 schema:familyName Kurzyński
58 schema:givenName Marek
59 rdf:type schema:Person
60 N67d5ed73766d4cd8b52db2f2bf3dd48b rdf:first sg:person.012345130667.82
61 rdf:rest N9859d7ee897f423ab4fb80fa61309301
62 N7e17caf2784c454d962430e63035a20d rdf:first sg:person.015437057771.55
63 rdf:rest N4de9f26d7f8948888ed41b8422ed15c2
64 N8ac6f95c397f45d4bbedcf43de6d7a1a schema:isbn 978-3-642-21221-5
65 978-3-642-21222-2
66 schema:name Hybrid Artificial Intelligent Systems
67 rdf:type schema:Book
68 N9859d7ee897f423ab4fb80fa61309301 rdf:first sg:person.013502106005.63
69 rdf:rest N9c29ff4603aa470fbda3323ba6220e43
70 N9c29ff4603aa470fbda3323ba6220e43 rdf:first sg:person.016056436767.91
71 rdf:rest rdf:nil
72 N9ebdf2b26fc5432eae22e29588a1e5a0 rdf:first Nabe757960e994061b89410a20114c4bc
73 rdf:rest N5165b7cb62dc4053bedffcec3ab06911
74 Na110414e7ab8417ab713af8dba670f75 rdf:first N3a632c89eaa740c2b290bce91c3949bf
75 rdf:rest rdf:nil
76 Nabe757960e994061b89410a20114c4bc schema:familyName Corchado
77 schema:givenName Emilio
78 rdf:type schema:Person
79 Ne9534dcf32b54914ab2eb45d73a3e079 schema:name dimensions_id
80 schema:value pub.1050761615
81 rdf:type schema:PropertyValue
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
86 schema:name Statistics
87 rdf:type schema:DefinedTerm
88 sg:person.012345130667.82 schema:affiliation https://www.grid.ac/institutes/grid.493418.3
89 schema:familyName Sedano
90 schema:givenName Javier
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345130667.82
92 rdf:type schema:Person
93 sg:person.013502106005.63 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
94 schema:familyName García-Tamargo
95 schema:givenName Marco
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013502106005.63
97 rdf:type schema:Person
98 sg:person.015437057771.55 schema:affiliation https://www.grid.ac/institutes/grid.493418.3
99 schema:familyName Berzosa
100 schema:givenName Alba
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437057771.55
102 rdf:type schema:Person
103 sg:person.015655732472.57 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
104 schema:familyName Villar
105 schema:givenName José R.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655732472.57
107 rdf:type schema:Person
108 sg:person.016056436767.91 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
109 schema:familyName de la Cal
110 schema:givenName Enrique
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056436767.91
112 rdf:type schema:Person
113 sg:pub.10.1007/978-3-642-13769-3_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012401049
114 https://doi.org/10.1007/978-3-642-13769-3_51
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-642-19644-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048232340
117 https://doi.org/10.1007/978-3-642-19644-7_10
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00500-008-0323-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013193478
120 https://doi.org/10.1007/s00500-008-0323-y
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00500-009-0414-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013532274
123 https://doi.org/10.1007/s00500-009-0414-4
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.apenergy.2009.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052077331
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.asoc.2010.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045297253
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.autcon.2005.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048754308
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijar.2008.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044359442
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.simpat.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042493112
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/4235.873237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172056
136 rdf:type schema:CreativeWork
137 https://doi.org/10.3233/ica-2009-0302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105810305
138 rdf:type schema:CreativeWork
139 https://doi.org/10.3233/ica-2010-0337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105812170
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
142 schema:name Computer Science Department, University of Oviedo, Campus de Viesques s/n, 33204 Gijón, Spain
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.493418.3 schema:alternateName Technological Institute of Castilla y León
145 schema:name Instituto Tecnológico de Castilla y León, Lopez Bravo 70, Pol. Ind. Villalonquéjar, 09001 Burgos, Spain
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...