Detecting Unknown Attacks in Wireless Sensor Networks Using Clustering Techniques View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Z. Banković , J. M. Moya , J. C. Vallejo , D. Fraga

ABSTRACT

Wireless sensor networks are usually deployed in unattended environments. This is the main reason why the update of security policies upon identifying new attacks cannot be done in a timely fashion, which gives enough time to attackers to make significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. In order to tackle this issue, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. The techniques are coupled with a reputation system, isolating in this way the compromised nodes. The proposal exhibits good performances in detecting and confining previously unseen attacks. More... »

PAGES

214-221

References to SciGraph publications

Book

TITLE

Hybrid Artificial Intelligent Systems

ISBN

978-3-642-21218-5
978-3-642-21219-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-21219-2_28

DOI

http://dx.doi.org/10.1007/978-3-642-21219-2_28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014335547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Dep. Ingenier\u00eda Electr\u00f3nica, Universidad Polit\u00e9cnica de Madrid, Av. Complutense 30, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bankovi\u0107", 
        "givenName": "Z.", 
        "id": "sg:person.013534273534.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534273534.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Dep. Ingenier\u00eda Electr\u00f3nica, Universidad Polit\u00e9cnica de Madrid, Av. Complutense 30, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moya", 
        "givenName": "J. M.", 
        "id": "sg:person.07662217004.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Dep. Ingenier\u00eda Electr\u00f3nica, Universidad Polit\u00e9cnica de Madrid, Av. Complutense 30, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vallejo", 
        "givenName": "J. C.", 
        "id": "sg:person.0606356734.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606356734.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Dep. Ingenier\u00eda Electr\u00f3nica, Universidad Polit\u00e9cnica de Madrid, Av. Complutense 30, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fraga", 
        "givenName": "D.", 
        "id": "sg:person.01263647634.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263647634.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10489-008-0132-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004318936", 
          "https://doi.org/10.1007/s10489-008-0132-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-008-0132-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004318936", 
          "https://doi.org/10.1007/s10489-008-0132-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(97)00068-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005216996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s91109380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007608279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2008.12.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024483903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74477-1_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027925573", 
          "https://doi.org/10.1007/978-3-540-74477-1_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74477-1_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027925573", 
          "https://doi.org/10.1007/978-3-540-74477-1_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1460877.1460903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037108305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2008.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043953188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15501320600692044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058403258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15501320600692044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058403258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icw.2005.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093713975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/issnip.2007.4496866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094351394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ica-2010-0334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105805844"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Wireless sensor networks are usually deployed in unattended environments. This is the main reason why the update of security policies upon identifying new attacks cannot be done in a timely fashion, which gives enough time to attackers to make significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. In order to tackle this issue, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. The techniques are coupled with a reputation system, isolating in this way the compromised nodes. The proposal exhibits good performances in detecting and confining previously unseen attacks.", 
    "editor": [
      {
        "familyName": "Corchado", 
        "givenName": "Emilio", 
        "type": "Person"
      }, 
      {
        "familyName": "Kurzy\u0144ski", 
        "givenName": "Marek", 
        "type": "Person"
      }, 
      {
        "familyName": "Wo\u017aniak", 
        "givenName": "Micha\u0142", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-21219-2_28", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-21218-5", 
        "978-3-642-21219-2"
      ], 
      "name": "Hybrid Artificial Intelligent Systems", 
      "type": "Book"
    }, 
    "name": "Detecting Unknown Attacks in Wireless Sensor Networks Using Clustering Techniques", 
    "pagination": "214-221", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014335547"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-21219-2_28"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "444b0e9fc7ac8a25270a9cf5546a2c95bf54879d7c3c130b6210d5d156236c67"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-21219-2_28", 
      "https://app.dimensions.ai/details/publication/pub.1014335547"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88257_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-21219-2_28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21219-2_28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21219-2_28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21219-2_28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21219-2_28'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-21219-2_28 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd7fd56d1c85f4b7cba6c5fa8abba0290
4 schema:citation sg:pub.10.1007/978-3-540-74477-1_36
5 sg:pub.10.1007/s10489-008-0132-0
6 https://doi.org/10.1016/j.neucom.2008.09.021
7 https://doi.org/10.1016/j.neucom.2008.12.033
8 https://doi.org/10.1016/s0925-2312(97)00068-4
9 https://doi.org/10.1080/15501320600692044
10 https://doi.org/10.1109/icw.2005.16
11 https://doi.org/10.1109/issnip.2007.4496866
12 https://doi.org/10.1145/1460877.1460903
13 https://doi.org/10.3233/ica-2010-0334
14 https://doi.org/10.3390/s91109380
15 schema:datePublished 2011
16 schema:datePublishedReg 2011-01-01
17 schema:description Wireless sensor networks are usually deployed in unattended environments. This is the main reason why the update of security policies upon identifying new attacks cannot be done in a timely fashion, which gives enough time to attackers to make significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. In order to tackle this issue, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. The techniques are coupled with a reputation system, isolating in this way the compromised nodes. The proposal exhibits good performances in detecting and confining previously unseen attacks.
18 schema:editor N5562bce0f9d247ed82822443796fa580
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N8fb684073cc04ddbb38ccbff94d140d2
23 schema:name Detecting Unknown Attacks in Wireless Sensor Networks Using Clustering Techniques
24 schema:pagination 214-221
25 schema:productId N143465a00c454670821d345f33daf368
26 N395082a69801449f9c7ad775eb876255
27 Nc5e7821006214ff8828aa9013e1cea18
28 schema:publisher Nb97c2a9527af4012b49a3523cb1e86fa
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014335547
30 https://doi.org/10.1007/978-3-642-21219-2_28
31 schema:sdDatePublished 2019-04-16T08:48
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nf46b70fe0f4445afa9b5ad7598a0efae
34 schema:url https://link.springer.com/10.1007%2F978-3-642-21219-2_28
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N143465a00c454670821d345f33daf368 schema:name dimensions_id
39 schema:value pub.1014335547
40 rdf:type schema:PropertyValue
41 N395082a69801449f9c7ad775eb876255 schema:name readcube_id
42 schema:value 444b0e9fc7ac8a25270a9cf5546a2c95bf54879d7c3c130b6210d5d156236c67
43 rdf:type schema:PropertyValue
44 N5562bce0f9d247ed82822443796fa580 rdf:first N6ad0d9d7b92047daa49d6297050695f3
45 rdf:rest N99acd1aea4b74566ba48d24c09d6fc61
46 N6644b584e8794ab6929eca4e26e51c01 rdf:first sg:person.0606356734.19
47 rdf:rest Naf86861a68574e6a8186f53d4776d921
48 N6ad0d9d7b92047daa49d6297050695f3 schema:familyName Corchado
49 schema:givenName Emilio
50 rdf:type schema:Person
51 N8fb684073cc04ddbb38ccbff94d140d2 schema:isbn 978-3-642-21218-5
52 978-3-642-21219-2
53 schema:name Hybrid Artificial Intelligent Systems
54 rdf:type schema:Book
55 N99acd1aea4b74566ba48d24c09d6fc61 rdf:first Na388c3f93f6e4b51b15a3666f568d739
56 rdf:rest Ne1cf0e1279304756b41c1ccc2d68d69e
57 Na388c3f93f6e4b51b15a3666f568d739 schema:familyName Kurzyński
58 schema:givenName Marek
59 rdf:type schema:Person
60 Naf86861a68574e6a8186f53d4776d921 rdf:first sg:person.01263647634.13
61 rdf:rest rdf:nil
62 Nb97c2a9527af4012b49a3523cb1e86fa schema:location Berlin, Heidelberg
63 schema:name Springer Berlin Heidelberg
64 rdf:type schema:Organisation
65 Nc5e7821006214ff8828aa9013e1cea18 schema:name doi
66 schema:value 10.1007/978-3-642-21219-2_28
67 rdf:type schema:PropertyValue
68 Nd7fd56d1c85f4b7cba6c5fa8abba0290 rdf:first sg:person.013534273534.80
69 rdf:rest Neafd7ee62ef24b9385cc21117eada10b
70 Ne1cf0e1279304756b41c1ccc2d68d69e rdf:first Ne86f438304e44e29849625e914aafa70
71 rdf:rest rdf:nil
72 Ne86f438304e44e29849625e914aafa70 schema:familyName Woźniak
73 schema:givenName Michał
74 rdf:type schema:Person
75 Neafd7ee62ef24b9385cc21117eada10b rdf:first sg:person.07662217004.56
76 rdf:rest N6644b584e8794ab6929eca4e26e51c01
77 Nf46b70fe0f4445afa9b5ad7598a0efae schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
83 schema:name Artificial Intelligence and Image Processing
84 rdf:type schema:DefinedTerm
85 sg:person.01263647634.13 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
86 schema:familyName Fraga
87 schema:givenName D.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263647634.13
89 rdf:type schema:Person
90 sg:person.013534273534.80 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
91 schema:familyName Banković
92 schema:givenName Z.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534273534.80
94 rdf:type schema:Person
95 sg:person.0606356734.19 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
96 schema:familyName Vallejo
97 schema:givenName J. C.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606356734.19
99 rdf:type schema:Person
100 sg:person.07662217004.56 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
101 schema:familyName Moya
102 schema:givenName J. M.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56
104 rdf:type schema:Person
105 sg:pub.10.1007/978-3-540-74477-1_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027925573
106 https://doi.org/10.1007/978-3-540-74477-1_36
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10489-008-0132-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004318936
109 https://doi.org/10.1007/s10489-008-0132-0
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.neucom.2008.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043953188
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.neucom.2008.12.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024483903
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0925-2312(97)00068-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005216996
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1080/15501320600692044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058403258
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/icw.2005.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093713975
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/issnip.2007.4496866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094351394
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1145/1460877.1460903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037108305
124 rdf:type schema:CreativeWork
125 https://doi.org/10.3233/ica-2010-0334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105805844
126 rdf:type schema:CreativeWork
127 https://doi.org/10.3390/s91109380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007608279
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
130 schema:name Dep. Ingeniería Electrónica, Universidad Politécnica de Madrid, Av. Complutense 30, 28040, Madrid, Spain
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...