Ontology type: schema:Chapter
2011
AUTHORSHuaming Zhang , Swetha Govindaiah
ABSTRACTIn this paper, we generalize the greedy routing concept to use semi-metric spaces. We prove that any connected n-vertex graph G admits a greedy embedding onto an appropriate semi-metric space such that (1) each vertex v of the graph is represented by up to k virtual coordinates (where the numbers are from 1 to 2n − 1 and k ≤ deg(v)); and (2) using an appropriate distance definition, there is always a distance decreasing path between any two vertices in G. In particular, we prove that, for a 3-connected plane graph G, there is a greedy embedding of G such that: (1) the greedy embedding can be obtained in linear time; and (2) each vertex can be represented by at most 3 virtual coordinates from 1 to 2n − 1. To our best knowledge, this is the first greedy routing algorithm for 3-connected plane graphs, albeit with non-standard notions of greedy embedding and greedy routing, such that: (1) it runs in linear time to compute the virtual coordinates for the vertices; and (2) the virtual coordinates are represented succinctly in O(logn) bits. More... »
PAGES58-69
Frontiers in Algorithmics and Algorithmic Aspects in Information and Management
ISBN
978-3-642-21203-1
978-3-642-21204-8
http://scigraph.springernature.com/pub.10.1007/978-3-642-21204-8_10
DOIhttp://dx.doi.org/10.1007/978-3-642-21204-8_10
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1047430319
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265893.3",
"name": [
"Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA"
],
"type": "Organization"
},
"familyName": "Zhang",
"givenName": "Huaming",
"id": "sg:person.012041227127.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041227127.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265893.3",
"name": [
"Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA"
],
"type": "Organization"
},
"familyName": "Govindaiah",
"givenName": "Swetha",
"id": "sg:person.016541127375.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541127375.33"
],
"type": "Person"
}
],
"datePublished": "2011",
"datePublishedReg": "2011-01-01",
"description": "In this paper, we generalize the greedy routing concept to use semi-metric spaces. We prove that any connected n-vertex graph G admits a greedy embedding onto an appropriate semi-metric space such that (1) each vertex v of the graph is represented by up to k virtual coordinates (where the numbers are from 1 to 2n\u2009\u2212\u20091 and k\u2009\u2264\u2009deg(v)); and (2) using an appropriate distance definition, there is always a distance decreasing path between any two vertices in G. In particular, we prove that, for a 3-connected plane graph G, there is a greedy embedding of G such that: (1) the greedy embedding can be obtained in linear time; and (2) each vertex can be represented by at most 3 virtual coordinates from 1 to 2n\u2009\u2212\u20091. To our best knowledge, this is the first greedy routing algorithm for 3-connected plane graphs, albeit with non-standard notions of greedy embedding and greedy routing, such that: (1) it runs in linear time to compute the virtual coordinates for the vertices; and (2) the virtual coordinates are represented succinctly in O(logn) bits.",
"editor": [
{
"familyName": "Atallah",
"givenName": "Mikhail",
"type": "Person"
},
{
"familyName": "Li",
"givenName": "Xiang-Yang",
"type": "Person"
},
{
"familyName": "Zhu",
"givenName": "Binhai",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-21204-8_10",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-21203-1",
"978-3-642-21204-8"
],
"name": "Frontiers in Algorithmics and Algorithmic Aspects in Information and Management",
"type": "Book"
},
"keywords": [
"semi-metric space",
"greedy embedding",
"graph G",
"linear time",
"vertex graph G",
"plane graph G",
"non-standard notion",
"plane graph",
"vertex v",
"greedy routing",
"vertices",
"graph",
"virtual coordinates",
"coordinates",
"distance definition",
"space",
"embedding",
"greedy routing algorithm",
"routing algorithm",
"algorithm",
"routing concept",
"routing",
"path",
"notion",
"distance",
"time",
"definition",
"bits",
"concept",
"better knowledge",
"knowledge",
"paper"
],
"name": "Greedy Routing via Embedding Graphs onto Semi-metric Spaces",
"pagination": "58-69",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1047430319"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-21204-8_10"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-21204-8_10",
"https://app.dimensions.ai/details/publication/pub.1047430319"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_64.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-21204-8_10"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21204-8_10'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21204-8_10'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21204-8_10'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21204-8_10'
This table displays all metadata directly associated to this object as RDF triples.
109 TRIPLES
23 PREDICATES
58 URIs
51 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-21204-8_10 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | Ncdda833427794457965eb63fa7585d64 |
4 | ″ | schema:datePublished | 2011 |
5 | ″ | schema:datePublishedReg | 2011-01-01 |
6 | ″ | schema:description | In this paper, we generalize the greedy routing concept to use semi-metric spaces. We prove that any connected n-vertex graph G admits a greedy embedding onto an appropriate semi-metric space such that (1) each vertex v of the graph is represented by up to k virtual coordinates (where the numbers are from 1 to 2n − 1 and k ≤ deg(v)); and (2) using an appropriate distance definition, there is always a distance decreasing path between any two vertices in G. In particular, we prove that, for a 3-connected plane graph G, there is a greedy embedding of G such that: (1) the greedy embedding can be obtained in linear time; and (2) each vertex can be represented by at most 3 virtual coordinates from 1 to 2n − 1. To our best knowledge, this is the first greedy routing algorithm for 3-connected plane graphs, albeit with non-standard notions of greedy embedding and greedy routing, such that: (1) it runs in linear time to compute the virtual coordinates for the vertices; and (2) the virtual coordinates are represented succinctly in O(logn) bits. |
7 | ″ | schema:editor | N6f6834b42f1b4f9594bf7cae84d31b34 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N5fa87185ff5f4c4c9340be27086e5b22 |
12 | ″ | schema:keywords | algorithm |
13 | ″ | ″ | better knowledge |
14 | ″ | ″ | bits |
15 | ″ | ″ | concept |
16 | ″ | ″ | coordinates |
17 | ″ | ″ | definition |
18 | ″ | ″ | distance |
19 | ″ | ″ | distance definition |
20 | ″ | ″ | embedding |
21 | ″ | ″ | graph |
22 | ″ | ″ | graph G |
23 | ″ | ″ | greedy embedding |
24 | ″ | ″ | greedy routing |
25 | ″ | ″ | greedy routing algorithm |
26 | ″ | ″ | knowledge |
27 | ″ | ″ | linear time |
28 | ″ | ″ | non-standard notion |
29 | ″ | ″ | notion |
30 | ″ | ″ | paper |
31 | ″ | ″ | path |
32 | ″ | ″ | plane graph |
33 | ″ | ″ | plane graph G |
34 | ″ | ″ | routing |
35 | ″ | ″ | routing algorithm |
36 | ″ | ″ | routing concept |
37 | ″ | ″ | semi-metric space |
38 | ″ | ″ | space |
39 | ″ | ″ | time |
40 | ″ | ″ | vertex graph G |
41 | ″ | ″ | vertex v |
42 | ″ | ″ | vertices |
43 | ″ | ″ | virtual coordinates |
44 | ″ | schema:name | Greedy Routing via Embedding Graphs onto Semi-metric Spaces |
45 | ″ | schema:pagination | 58-69 |
46 | ″ | schema:productId | N833b17ed912c46c0912cd5b4c1e42499 |
47 | ″ | ″ | Ne86590ba5c89416694393d6bba8acf07 |
48 | ″ | schema:publisher | N4186a4d698be42d09228f4970e5df2b4 |
49 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047430319 |
50 | ″ | ″ | https://doi.org/10.1007/978-3-642-21204-8_10 |
51 | ″ | schema:sdDatePublished | 2022-05-20T07:49 |
52 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
53 | ″ | schema:sdPublisher | N0f97f4b195164b8db798f6a93d25352e |
54 | ″ | schema:url | https://doi.org/10.1007/978-3-642-21204-8_10 |
55 | ″ | sgo:license | sg:explorer/license/ |
56 | ″ | sgo:sdDataset | chapters |
57 | ″ | rdf:type | schema:Chapter |
58 | N0ba9638d66b84813a88910a0c01b7b07 | schema:familyName | Atallah |
59 | ″ | schema:givenName | Mikhail |
60 | ″ | rdf:type | schema:Person |
61 | N0f97f4b195164b8db798f6a93d25352e | schema:name | Springer Nature - SN SciGraph project |
62 | ″ | rdf:type | schema:Organization |
63 | N135dc73ea45242048d1a901cb2e960e0 | rdf:first | sg:person.016541127375.33 |
64 | ″ | rdf:rest | rdf:nil |
65 | N2835b678a6644da8a279a60e613d0465 | rdf:first | Nf0d936bed697438c98c048d5b49eff8c |
66 | ″ | rdf:rest | rdf:nil |
67 | N4186a4d698be42d09228f4970e5df2b4 | schema:name | Springer Nature |
68 | ″ | rdf:type | schema:Organisation |
69 | N5fa87185ff5f4c4c9340be27086e5b22 | schema:isbn | 978-3-642-21203-1 |
70 | ″ | ″ | 978-3-642-21204-8 |
71 | ″ | schema:name | Frontiers in Algorithmics and Algorithmic Aspects in Information and Management |
72 | ″ | rdf:type | schema:Book |
73 | N6f6834b42f1b4f9594bf7cae84d31b34 | rdf:first | N0ba9638d66b84813a88910a0c01b7b07 |
74 | ″ | rdf:rest | N77cf3018215f42d4ac4a0b6b24b2af08 |
75 | N77cf3018215f42d4ac4a0b6b24b2af08 | rdf:first | N97284a81c2474aeabd836741512be315 |
76 | ″ | rdf:rest | N2835b678a6644da8a279a60e613d0465 |
77 | N833b17ed912c46c0912cd5b4c1e42499 | schema:name | doi |
78 | ″ | schema:value | 10.1007/978-3-642-21204-8_10 |
79 | ″ | rdf:type | schema:PropertyValue |
80 | N97284a81c2474aeabd836741512be315 | schema:familyName | Li |
81 | ″ | schema:givenName | Xiang-Yang |
82 | ″ | rdf:type | schema:Person |
83 | Ncdda833427794457965eb63fa7585d64 | rdf:first | sg:person.012041227127.88 |
84 | ″ | rdf:rest | N135dc73ea45242048d1a901cb2e960e0 |
85 | Ne86590ba5c89416694393d6bba8acf07 | schema:name | dimensions_id |
86 | ″ | schema:value | pub.1047430319 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | Nf0d936bed697438c98c048d5b49eff8c | schema:familyName | Zhu |
89 | ″ | schema:givenName | Binhai |
90 | ″ | rdf:type | schema:Person |
91 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
92 | ″ | schema:name | Information and Computing Sciences |
93 | ″ | rdf:type | schema:DefinedTerm |
94 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Computation Theory and Mathematics |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | sg:person.012041227127.88 | schema:affiliation | grid-institutes:grid.265893.3 |
98 | ″ | schema:familyName | Zhang |
99 | ″ | schema:givenName | Huaming |
100 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041227127.88 |
101 | ″ | rdf:type | schema:Person |
102 | sg:person.016541127375.33 | schema:affiliation | grid-institutes:grid.265893.3 |
103 | ″ | schema:familyName | Govindaiah |
104 | ″ | schema:givenName | Swetha |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541127375.33 |
106 | ″ | rdf:type | schema:Person |
107 | grid-institutes:grid.265893.3 | schema:alternateName | Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA |
108 | ″ | schema:name | Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA |
109 | ″ | rdf:type | schema:Organization |