Reduced Rank Covariances for the Analysis of Environmental Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Orietta Nicolis , Doug Nychka

ABSTRACT

In this work we propose a Monte Carlo estimator for non stationary covariances of large incomplete lattice or irregularly distributed data. In particular, we propose a method called “reduced rank covariance” (RRC), based on the multiresolution approach for reducing the dimensionality of the spatial covariances. The basic idea is to estimate the covariance on a lower resolution grid starting from a stationary model (such as the Mathérn covariance) and use the multiresolution property of wavelet basis for evaluating the covariance on the full grid. Since this method doesn’t need to compute the wavelet coefficients, it is very fast in estimating covariances in large data sets. The spatial forecasting performances of the method has been described through a simulation study. Finally, the method has been applied to two environmental data sets: the aerosol optical thickness (AOT) satellite data observed in Northern Italy and the ozone concentrations in the eastern United States. More... »

PAGES

253-263

References to SciGraph publications

Book

TITLE

Advanced Statistical Methods for the Analysis of Large Data-Sets

ISBN

978-3-642-21036-5
978-3-642-21037-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-21037-2_23

DOI

http://dx.doi.org/10.1007/978-3-642-21037-2_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036952473


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bergamo", 
          "id": "https://www.grid.ac/institutes/grid.33236.37", 
          "name": [
            "Department of Information Technology and Mathematical Methods, University of Bergamo, Bergamo, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicolis", 
        "givenName": "Orietta", 
        "id": "sg:person.013666355451.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666355451.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Atmospheric Research", 
          "id": "https://www.grid.ac/institutes/grid.57828.30", 
          "name": [
            "Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nychka", 
        "givenName": "Doug", 
        "id": "sg:person.07745505663.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07745505663.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2008.00663.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000712505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/env.837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006618003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2007.00633.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016913265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2007.00633.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016913265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02123482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018616009", 
          "https://doi.org/10.1007/bf02123482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02123482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018616009", 
          "https://doi.org/10.1007/bf02123482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jkss.2007.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040108772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/env.965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053571844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/1471082x02st037oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064159044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/1471082x02st037oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064159044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000000852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198554"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "In this work we propose a Monte Carlo estimator for non stationary covariances of large incomplete lattice or irregularly distributed data. In particular, we propose a method called \u201creduced rank covariance\u201d (RRC), based on the multiresolution approach for reducing the dimensionality of the spatial covariances. The basic idea is to estimate the covariance on a lower resolution grid starting from a stationary model (such as the Math\u00e9rn covariance) and use the multiresolution property of wavelet basis for evaluating the covariance on the full grid. Since this method doesn\u2019t need to compute the wavelet coefficients, it is very fast in estimating covariances in large data sets. The spatial forecasting performances of the method has been described through a simulation study. Finally, the method has been applied to two environmental data sets: the aerosol optical thickness (AOT) satellite data observed in Northern Italy and the ozone concentrations in the eastern United States.", 
    "editor": [
      {
        "familyName": "Di Ciaccio", 
        "givenName": "Agostino", 
        "type": "Person"
      }, 
      {
        "familyName": "Coli", 
        "givenName": "Mauro", 
        "type": "Person"
      }, 
      {
        "familyName": "Angulo Ibanez", 
        "givenName": "Jose Miguel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-21037-2_23", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-21036-5", 
        "978-3-642-21037-2"
      ], 
      "name": "Advanced Statistical Methods for the Analysis of Large Data-Sets", 
      "type": "Book"
    }, 
    "name": "Reduced Rank Covariances for the Analysis of Environmental Data", 
    "pagination": "253-263", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-21037-2_23"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b00735a14ff1714e80c88c4511e1f8698039236e563c8a7f1f594e9ac1fc8c23"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036952473"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-21037-2_23", 
      "https://app.dimensions.ai/details/publication/pub.1036952473"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000266.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-21037-2_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21037-2_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21037-2_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21037-2_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21037-2_23'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-21037-2_23 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1e3c883c8bfa4c1080333417f8244661
4 schema:citation sg:pub.10.1007/bf02123482
5 https://doi.org/10.1002/env.837
6 https://doi.org/10.1002/env.965
7 https://doi.org/10.1016/j.jkss.2007.09.001
8 https://doi.org/10.1111/j.1467-9868.2007.00633.x
9 https://doi.org/10.1111/j.1467-9868.2008.00663.x
10 https://doi.org/10.1191/1471082x02st037oa
11 https://doi.org/10.1198/016214506000000852
12 schema:datePublished 2012
13 schema:datePublishedReg 2012-01-01
14 schema:description In this work we propose a Monte Carlo estimator for non stationary covariances of large incomplete lattice or irregularly distributed data. In particular, we propose a method called “reduced rank covariance” (RRC), based on the multiresolution approach for reducing the dimensionality of the spatial covariances. The basic idea is to estimate the covariance on a lower resolution grid starting from a stationary model (such as the Mathérn covariance) and use the multiresolution property of wavelet basis for evaluating the covariance on the full grid. Since this method doesn’t need to compute the wavelet coefficients, it is very fast in estimating covariances in large data sets. The spatial forecasting performances of the method has been described through a simulation study. Finally, the method has been applied to two environmental data sets: the aerosol optical thickness (AOT) satellite data observed in Northern Italy and the ozone concentrations in the eastern United States.
15 schema:editor N789adb69fc73407e93a3723f8d6fe6aa
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Nae9e8d9669d64793bb06ccf6e16ed456
20 schema:name Reduced Rank Covariances for the Analysis of Environmental Data
21 schema:pagination 253-263
22 schema:productId N5bb4fedd405c4ae293070753594839cf
23 N7e1b30ea912b4446b82e8cc8a0da6648
24 N903816f6f2784330beba9fb5f2d89dd7
25 schema:publisher N89881bbe525c4f2c996eb1445eb2d096
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036952473
27 https://doi.org/10.1007/978-3-642-21037-2_23
28 schema:sdDatePublished 2019-04-15T14:26
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nab5526f6191b42819da06aa9e0ce9047
31 schema:url http://link.springer.com/10.1007/978-3-642-21037-2_23
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N1e3c883c8bfa4c1080333417f8244661 rdf:first sg:person.013666355451.95
36 rdf:rest Nbe265c7a856246efa3005b623fa42303
37 N2bcc0746a3c84bbfbdbdc38f6642610c rdf:first N39749958eb714f2f9b6f90d11e9e1082
38 rdf:rest N653a808b2ffa491b8838c952e0c66645
39 N39749958eb714f2f9b6f90d11e9e1082 schema:familyName Coli
40 schema:givenName Mauro
41 rdf:type schema:Person
42 N514c756ed06b4c71881087590331c2bc schema:familyName Angulo Ibanez
43 schema:givenName Jose Miguel
44 rdf:type schema:Person
45 N5bb4fedd405c4ae293070753594839cf schema:name doi
46 schema:value 10.1007/978-3-642-21037-2_23
47 rdf:type schema:PropertyValue
48 N653a808b2ffa491b8838c952e0c66645 rdf:first N514c756ed06b4c71881087590331c2bc
49 rdf:rest rdf:nil
50 N789adb69fc73407e93a3723f8d6fe6aa rdf:first Nc89c2f3fbc2b4b6f8d741ef28b8f6dfb
51 rdf:rest N2bcc0746a3c84bbfbdbdc38f6642610c
52 N7e1b30ea912b4446b82e8cc8a0da6648 schema:name dimensions_id
53 schema:value pub.1036952473
54 rdf:type schema:PropertyValue
55 N89881bbe525c4f2c996eb1445eb2d096 schema:location Berlin, Heidelberg
56 schema:name Springer Berlin Heidelberg
57 rdf:type schema:Organisation
58 N903816f6f2784330beba9fb5f2d89dd7 schema:name readcube_id
59 schema:value b00735a14ff1714e80c88c4511e1f8698039236e563c8a7f1f594e9ac1fc8c23
60 rdf:type schema:PropertyValue
61 Nab5526f6191b42819da06aa9e0ce9047 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nae9e8d9669d64793bb06ccf6e16ed456 schema:isbn 978-3-642-21036-5
64 978-3-642-21037-2
65 schema:name Advanced Statistical Methods for the Analysis of Large Data-Sets
66 rdf:type schema:Book
67 Nbe265c7a856246efa3005b623fa42303 rdf:first sg:person.07745505663.08
68 rdf:rest rdf:nil
69 Nc89c2f3fbc2b4b6f8d741ef28b8f6dfb schema:familyName Di Ciaccio
70 schema:givenName Agostino
71 rdf:type schema:Person
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:person.013666355451.95 schema:affiliation https://www.grid.ac/institutes/grid.33236.37
79 schema:familyName Nicolis
80 schema:givenName Orietta
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666355451.95
82 rdf:type schema:Person
83 sg:person.07745505663.08 schema:affiliation https://www.grid.ac/institutes/grid.57828.30
84 schema:familyName Nychka
85 schema:givenName Doug
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07745505663.08
87 rdf:type schema:Person
88 sg:pub.10.1007/bf02123482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018616009
89 https://doi.org/10.1007/bf02123482
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/env.837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006618003
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/env.965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053571844
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.jkss.2007.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040108772
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1111/j.1467-9868.2007.00633.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016913265
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1111/j.1467-9868.2008.00663.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000712505
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1191/1471082x02st037oa schema:sameAs https://app.dimensions.ai/details/publication/pub.1064159044
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1198/016214506000000852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198554
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.33236.37 schema:alternateName University of Bergamo
106 schema:name Department of Information Technology and Mathematical Methods, University of Bergamo, Bergamo, Italy
107 rdf:type schema:Organization
108 https://www.grid.ac/institutes/grid.57828.30 schema:alternateName National Center for Atmospheric Research
109 schema:name Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, Boulder, CO, USA
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...