Reduced Rank Covariances for the Analysis of Environmental Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Orietta Nicolis , Doug Nychka

ABSTRACT

In this work we propose a Monte Carlo estimator for non stationary covariances of large incomplete lattice or irregularly distributed data. In particular, we propose a method called “reduced rank covariance” (RRC), based on the multiresolution approach for reducing the dimensionality of the spatial covariances. The basic idea is to estimate the covariance on a lower resolution grid starting from a stationary model (such as the Mathérn covariance) and use the multiresolution property of wavelet basis for evaluating the covariance on the full grid. Since this method doesn’t need to compute the wavelet coefficients, it is very fast in estimating covariances in large data sets. The spatial forecasting performances of the method has been described through a simulation study. Finally, the method has been applied to two environmental data sets: the aerosol optical thickness (AOT) satellite data observed in Northern Italy and the ozone concentrations in the eastern United States. More... »

PAGES

253-263

References to SciGraph publications

Book

TITLE

Advanced Statistical Methods for the Analysis of Large Data-Sets

ISBN

978-3-642-21036-5
978-3-642-21037-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-21037-2_23

DOI

http://dx.doi.org/10.1007/978-3-642-21037-2_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036952473


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bergamo", 
          "id": "https://www.grid.ac/institutes/grid.33236.37", 
          "name": [
            "Department of Information Technology and Mathematical Methods, University of Bergamo, Bergamo, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicolis", 
        "givenName": "Orietta", 
        "id": "sg:person.013666355451.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666355451.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Atmospheric Research", 
          "id": "https://www.grid.ac/institutes/grid.57828.30", 
          "name": [
            "Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nychka", 
        "givenName": "Doug", 
        "id": "sg:person.07745505663.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07745505663.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2008.00663.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000712505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/env.837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006618003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2007.00633.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016913265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2007.00633.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016913265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02123482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018616009", 
          "https://doi.org/10.1007/bf02123482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02123482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018616009", 
          "https://doi.org/10.1007/bf02123482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jkss.2007.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040108772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/env.965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053571844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/1471082x02st037oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064159044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/1471082x02st037oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064159044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000000852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198554"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "In this work we propose a Monte Carlo estimator for non stationary covariances of large incomplete lattice or irregularly distributed data. In particular, we propose a method called \u201creduced rank covariance\u201d (RRC), based on the multiresolution approach for reducing the dimensionality of the spatial covariances. The basic idea is to estimate the covariance on a lower resolution grid starting from a stationary model (such as the Math\u00e9rn covariance) and use the multiresolution property of wavelet basis for evaluating the covariance on the full grid. Since this method doesn\u2019t need to compute the wavelet coefficients, it is very fast in estimating covariances in large data sets. The spatial forecasting performances of the method has been described through a simulation study. Finally, the method has been applied to two environmental data sets: the aerosol optical thickness (AOT) satellite data observed in Northern Italy and the ozone concentrations in the eastern United States.", 
    "editor": [
      {
        "familyName": "Di Ciaccio", 
        "givenName": "Agostino", 
        "type": "Person"
      }, 
      {
        "familyName": "Coli", 
        "givenName": "Mauro", 
        "type": "Person"
      }, 
      {
        "familyName": "Angulo Ibanez", 
        "givenName": "Jose Miguel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-21037-2_23", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-21036-5", 
        "978-3-642-21037-2"
      ], 
      "name": "Advanced Statistical Methods for the Analysis of Large Data-Sets", 
      "type": "Book"
    }, 
    "name": "Reduced Rank Covariances for the Analysis of Environmental Data", 
    "pagination": "253-263", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-21037-2_23"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b00735a14ff1714e80c88c4511e1f8698039236e563c8a7f1f594e9ac1fc8c23"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036952473"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-21037-2_23", 
      "https://app.dimensions.ai/details/publication/pub.1036952473"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000266.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-21037-2_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21037-2_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21037-2_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21037-2_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21037-2_23'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-21037-2_23 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7c58cf3059c3400fb3b659425719d3b6
4 schema:citation sg:pub.10.1007/bf02123482
5 https://doi.org/10.1002/env.837
6 https://doi.org/10.1002/env.965
7 https://doi.org/10.1016/j.jkss.2007.09.001
8 https://doi.org/10.1111/j.1467-9868.2007.00633.x
9 https://doi.org/10.1111/j.1467-9868.2008.00663.x
10 https://doi.org/10.1191/1471082x02st037oa
11 https://doi.org/10.1198/016214506000000852
12 schema:datePublished 2012
13 schema:datePublishedReg 2012-01-01
14 schema:description In this work we propose a Monte Carlo estimator for non stationary covariances of large incomplete lattice or irregularly distributed data. In particular, we propose a method called “reduced rank covariance” (RRC), based on the multiresolution approach for reducing the dimensionality of the spatial covariances. The basic idea is to estimate the covariance on a lower resolution grid starting from a stationary model (such as the Mathérn covariance) and use the multiresolution property of wavelet basis for evaluating the covariance on the full grid. Since this method doesn’t need to compute the wavelet coefficients, it is very fast in estimating covariances in large data sets. The spatial forecasting performances of the method has been described through a simulation study. Finally, the method has been applied to two environmental data sets: the aerosol optical thickness (AOT) satellite data observed in Northern Italy and the ozone concentrations in the eastern United States.
15 schema:editor N9d31add4f67348b2ae26d7d9c36becb2
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N8d13e18e4bb7429183797cfefe1c789e
20 schema:name Reduced Rank Covariances for the Analysis of Environmental Data
21 schema:pagination 253-263
22 schema:productId N580d347fd0bf49f4b56a0d6a34447b4e
23 N7cdbc39a303848c7a0fc3ec38581445b
24 Na751cf82fc5f47df85b35565e131899d
25 schema:publisher Nb29c42ddd5ac4e43b502f0e77b6b9f71
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036952473
27 https://doi.org/10.1007/978-3-642-21037-2_23
28 schema:sdDatePublished 2019-04-15T14:26
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N75f53db2f6124b8aac65e6c3ce9aaac0
31 schema:url http://link.springer.com/10.1007/978-3-642-21037-2_23
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N1dec1735ea104deda96aeb7c37fc1fde rdf:first Nf32b22b56db04d00b7939751b97dd33a
36 rdf:rest rdf:nil
37 N43a3c5ed0f5b4d02929fbc7076f4dc0d schema:familyName Coli
38 schema:givenName Mauro
39 rdf:type schema:Person
40 N580d347fd0bf49f4b56a0d6a34447b4e schema:name doi
41 schema:value 10.1007/978-3-642-21037-2_23
42 rdf:type schema:PropertyValue
43 N5a67558d2a7f416188fd351e11bd5180 schema:familyName Di Ciaccio
44 schema:givenName Agostino
45 rdf:type schema:Person
46 N75f53db2f6124b8aac65e6c3ce9aaac0 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N780e10605cbc47d5a19ac1f9c9730bdb rdf:first sg:person.07745505663.08
49 rdf:rest rdf:nil
50 N7c58cf3059c3400fb3b659425719d3b6 rdf:first sg:person.013666355451.95
51 rdf:rest N780e10605cbc47d5a19ac1f9c9730bdb
52 N7cdbc39a303848c7a0fc3ec38581445b schema:name readcube_id
53 schema:value b00735a14ff1714e80c88c4511e1f8698039236e563c8a7f1f594e9ac1fc8c23
54 rdf:type schema:PropertyValue
55 N8d13e18e4bb7429183797cfefe1c789e schema:isbn 978-3-642-21036-5
56 978-3-642-21037-2
57 schema:name Advanced Statistical Methods for the Analysis of Large Data-Sets
58 rdf:type schema:Book
59 N9d31add4f67348b2ae26d7d9c36becb2 rdf:first N5a67558d2a7f416188fd351e11bd5180
60 rdf:rest Neca82be918744174889c602bd934e36c
61 Na751cf82fc5f47df85b35565e131899d schema:name dimensions_id
62 schema:value pub.1036952473
63 rdf:type schema:PropertyValue
64 Nb29c42ddd5ac4e43b502f0e77b6b9f71 schema:location Berlin, Heidelberg
65 schema:name Springer Berlin Heidelberg
66 rdf:type schema:Organisation
67 Neca82be918744174889c602bd934e36c rdf:first N43a3c5ed0f5b4d02929fbc7076f4dc0d
68 rdf:rest N1dec1735ea104deda96aeb7c37fc1fde
69 Nf32b22b56db04d00b7939751b97dd33a schema:familyName Angulo Ibanez
70 schema:givenName Jose Miguel
71 rdf:type schema:Person
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:person.013666355451.95 schema:affiliation https://www.grid.ac/institutes/grid.33236.37
79 schema:familyName Nicolis
80 schema:givenName Orietta
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666355451.95
82 rdf:type schema:Person
83 sg:person.07745505663.08 schema:affiliation https://www.grid.ac/institutes/grid.57828.30
84 schema:familyName Nychka
85 schema:givenName Doug
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07745505663.08
87 rdf:type schema:Person
88 sg:pub.10.1007/bf02123482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018616009
89 https://doi.org/10.1007/bf02123482
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/env.837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006618003
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/env.965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053571844
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.jkss.2007.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040108772
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1111/j.1467-9868.2007.00633.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016913265
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1111/j.1467-9868.2008.00663.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000712505
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1191/1471082x02st037oa schema:sameAs https://app.dimensions.ai/details/publication/pub.1064159044
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1198/016214506000000852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198554
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.33236.37 schema:alternateName University of Bergamo
106 schema:name Department of Information Technology and Mathematical Methods, University of Bergamo, Bergamo, Italy
107 rdf:type schema:Organization
108 https://www.grid.ac/institutes/grid.57828.30 schema:alternateName National Center for Atmospheric Research
109 schema:name Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, Boulder, CO, USA
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...