Automatic Delineation of Left and Right Ventricles in Cardiac MRI Sequences Using a Joint Ventricular Model View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Xiaoguang Lu , Yang Wang , Bogdan Georgescu , Arne Littman , Dorin Comaniciu

ABSTRACT

Cardiac magnetic resonance imaging (MRI) has advanced to become a powerful tool in clinical practice. Extraction of morphological and functional features from cardiac MR imaging for diagnosis and disease monitoring remains a time-consuming task for clinicians. We present a fully automatic approach to extracting the structures and dynamics for both left and right ventricles. The cine short-axis stack of a cardiac MR scan is used to reconstruct a 3D volume sequence. A joint LV-RV model is introduced to delineate the boundaries of both left and right ventricles in each frame, and to combine both spatial and temporal context to track the chamber boundary motion over cardiac cycles. Both qualitative and quantitative results show promise of the proposed method. More... »

PAGES

250-258

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-21028-0_31

DOI

http://dx.doi.org/10.1007/978-3-642-21028-0_31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005930136


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Xiaoguang", 
        "id": "sg:person.0656702353.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yang", 
        "id": "sg:person.01356704511.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356704511.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Magnetic Resonance, Siemens Healthcare, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Magnetic Resonance, Siemens Healthcare, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Littman", 
        "givenName": "Arne", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Cardiac magnetic resonance imaging (MRI) has advanced to become a powerful tool in clinical practice. Extraction of morphological and functional features from cardiac MR imaging for diagnosis and disease monitoring remains a time-consuming task for clinicians. We present a fully automatic approach to extracting the structures and dynamics for both left and right ventricles. The cine short-axis stack of a cardiac MR scan is used to reconstruct a 3D volume sequence. A joint LV-RV model is introduced to delineate the boundaries of both left and right ventricles in each frame, and to combine both spatial and temporal context to track the chamber boundary motion over cardiac cycles. Both qualitative and quantitative results show promise of the proposed method.", 
    "editor": [
      {
        "familyName": "Metaxas", 
        "givenName": "Dimitris N.", 
        "type": "Person"
      }, 
      {
        "familyName": "Axel", 
        "givenName": "Leon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-21028-0_31", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-21027-3", 
        "978-3-642-21028-0"
      ], 
      "name": "Functional Imaging and Modeling of the Heart", 
      "type": "Book"
    }, 
    "keywords": [
      "magnetic resonance imaging", 
      "right ventricle", 
      "cardiac magnetic resonance imaging", 
      "cardiac MR scans", 
      "clinical practice", 
      "resonance imaging", 
      "short-axis stack", 
      "time-consuming task", 
      "cardiac MRI sequences", 
      "MR scans", 
      "disease monitoring", 
      "ventricle", 
      "cardiac MR", 
      "MRI sequences", 
      "cardiac cycle", 
      "automatic approach", 
      "automatic delineation", 
      "volume sequences", 
      "temporal context", 
      "clinicians", 
      "ventricular model", 
      "diagnosis", 
      "functional features", 
      "scans", 
      "imaging", 
      "MR", 
      "left", 
      "quantitative results", 
      "powerful tool", 
      "task", 
      "delineation", 
      "monitoring", 
      "tool", 
      "practice", 
      "promise", 
      "model", 
      "extraction", 
      "frame", 
      "stack", 
      "features", 
      "boundary motion", 
      "context", 
      "results", 
      "sequence", 
      "cycle", 
      "method", 
      "motion", 
      "approach", 
      "boundaries", 
      "structure", 
      "dynamics", 
      "cine short-axis stack", 
      "joint LV-RV model", 
      "LV-RV model", 
      "chamber boundary motion", 
      "Joint Ventricular Model"
    ], 
    "name": "Automatic Delineation of Left and Right Ventricles in Cardiac MRI Sequences Using a Joint Ventricular Model", 
    "pagination": "250-258", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005930136"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-21028-0_31"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-21028-0_31", 
      "https://app.dimensions.ai/details/publication/pub.1005930136"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_9.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-21028-0_31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21028-0_31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21028-0_31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21028-0_31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21028-0_31'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      23 PREDICATES      84 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-21028-0_31 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:11
4 anzsrc-for:1103
5 schema:author Ne608c0fca0b64019b0ef8c74fca7740d
6 schema:datePublished 2011
7 schema:datePublishedReg 2011-01-01
8 schema:description Cardiac magnetic resonance imaging (MRI) has advanced to become a powerful tool in clinical practice. Extraction of morphological and functional features from cardiac MR imaging for diagnosis and disease monitoring remains a time-consuming task for clinicians. We present a fully automatic approach to extracting the structures and dynamics for both left and right ventricles. The cine short-axis stack of a cardiac MR scan is used to reconstruct a 3D volume sequence. A joint LV-RV model is introduced to delineate the boundaries of both left and right ventricles in each frame, and to combine both spatial and temporal context to track the chamber boundary motion over cardiac cycles. Both qualitative and quantitative results show promise of the proposed method.
9 schema:editor N7896cf7930d946668dcf2d042981633b
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N59e41ae14ab04adb87c2ab29e9320ee0
14 schema:keywords Joint Ventricular Model
15 LV-RV model
16 MR
17 MR scans
18 MRI sequences
19 approach
20 automatic approach
21 automatic delineation
22 boundaries
23 boundary motion
24 cardiac MR
25 cardiac MR scans
26 cardiac MRI sequences
27 cardiac cycle
28 cardiac magnetic resonance imaging
29 chamber boundary motion
30 cine short-axis stack
31 clinical practice
32 clinicians
33 context
34 cycle
35 delineation
36 diagnosis
37 disease monitoring
38 dynamics
39 extraction
40 features
41 frame
42 functional features
43 imaging
44 joint LV-RV model
45 left
46 magnetic resonance imaging
47 method
48 model
49 monitoring
50 motion
51 powerful tool
52 practice
53 promise
54 quantitative results
55 resonance imaging
56 results
57 right ventricle
58 scans
59 sequence
60 short-axis stack
61 stack
62 structure
63 task
64 temporal context
65 time-consuming task
66 tool
67 ventricle
68 ventricular model
69 volume sequences
70 schema:name Automatic Delineation of Left and Right Ventricles in Cardiac MRI Sequences Using a Joint Ventricular Model
71 schema:pagination 250-258
72 schema:productId N3f50e9bcb2c94029b454e5958bf18625
73 N6e46ba5f0edf41269a5fcb742e24ac92
74 schema:publisher N9cd6bbaeeab44c959206cc4dd835d03e
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005930136
76 https://doi.org/10.1007/978-3-642-21028-0_31
77 schema:sdDatePublished 2022-01-01T19:28
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N6829154ea10c440397a3ec1c09c6aec3
80 schema:url https://doi.org/10.1007/978-3-642-21028-0_31
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N0e317f0cd8fe4f079286c84d1ec39c73 schema:familyName Metaxas
85 schema:givenName Dimitris N.
86 rdf:type schema:Person
87 N3f50e9bcb2c94029b454e5958bf18625 schema:name dimensions_id
88 schema:value pub.1005930136
89 rdf:type schema:PropertyValue
90 N59e41ae14ab04adb87c2ab29e9320ee0 schema:isbn 978-3-642-21027-3
91 978-3-642-21028-0
92 schema:name Functional Imaging and Modeling of the Heart
93 rdf:type schema:Book
94 N603d511f587b45128223a8ba15130d11 rdf:first sg:person.01356704511.13
95 rdf:rest Nd0992bad8578469cb5f4656701f5dce4
96 N6829154ea10c440397a3ec1c09c6aec3 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N6e46ba5f0edf41269a5fcb742e24ac92 schema:name doi
99 schema:value 10.1007/978-3-642-21028-0_31
100 rdf:type schema:PropertyValue
101 N7896cf7930d946668dcf2d042981633b rdf:first N0e317f0cd8fe4f079286c84d1ec39c73
102 rdf:rest Nb571c9b01d954727acb6700143a1eed6
103 N8000d2d2c6b840a293034183ee97098c rdf:first sg:person.01066111014.77
104 rdf:rest rdf:nil
105 N9cd6bbaeeab44c959206cc4dd835d03e schema:name Springer Nature
106 rdf:type schema:Organisation
107 Na7f4a34e73bf46be819662f51e1176fb schema:familyName Axel
108 schema:givenName Leon
109 rdf:type schema:Person
110 Nb571c9b01d954727acb6700143a1eed6 rdf:first Na7f4a34e73bf46be819662f51e1176fb
111 rdf:rest rdf:nil
112 Nd0992bad8578469cb5f4656701f5dce4 rdf:first sg:person.0703547214.37
113 rdf:rest Nec147293b00047cb87b474015aae0851
114 Ne608c0fca0b64019b0ef8c74fca7740d rdf:first sg:person.0656702353.18
115 rdf:rest N603d511f587b45128223a8ba15130d11
116 Ne9ef59df9c7f4000a4fc5c7863fe9895 schema:affiliation grid-institutes:grid.5406.7
117 schema:familyName Littman
118 schema:givenName Arne
119 rdf:type schema:Person
120 Nec147293b00047cb87b474015aae0851 rdf:first Ne9ef59df9c7f4000a4fc5c7863fe9895
121 rdf:rest N8000d2d2c6b840a293034183ee97098c
122 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
123 schema:name Information and Computing Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
126 schema:name Artificial Intelligence and Image Processing
127 rdf:type schema:DefinedTerm
128 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
129 schema:name Medical and Health Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
132 schema:name Clinical Sciences
133 rdf:type schema:DefinedTerm
134 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
135 schema:familyName Comaniciu
136 schema:givenName Dorin
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
138 rdf:type schema:Person
139 sg:person.01356704511.13 schema:affiliation grid-institutes:grid.419233.e
140 schema:familyName Wang
141 schema:givenName Yang
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356704511.13
143 rdf:type schema:Person
144 sg:person.0656702353.18 schema:affiliation grid-institutes:grid.419233.e
145 schema:familyName Lu
146 schema:givenName Xiaoguang
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18
148 rdf:type schema:Person
149 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
150 schema:familyName Georgescu
151 schema:givenName Bogdan
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
153 rdf:type schema:Person
154 grid-institutes:grid.419233.e schema:alternateName Siemens Corporate Research, Princeton, NJ, USA
155 schema:name Siemens Corporate Research, Princeton, NJ, USA
156 rdf:type schema:Organization
157 grid-institutes:grid.5406.7 schema:alternateName Magnetic Resonance, Siemens Healthcare, Erlangen, Germany
158 schema:name Magnetic Resonance, Siemens Healthcare, Erlangen, Germany
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...