Machine Learning View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Crina Grosan , Ajith Abraham

ABSTRACT

Machine Learning[6][8][12] is concerned with the study of building computer programs that automatically improve and/or adapt their performance through experience. Machine learning can be thought of as “programming by example” [11]. Machine learning has many common things with other domains such as statistics and probability theory (understanding the phenomena that have generated the data), data mining (finding patterns in the data that are understandable by people) and cognitive sciences (human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people such as concept learning, skill acquisition, strategy change, etc.) [1]. More... »

PAGES

261-268

Book

TITLE

Intelligent Systems

ISBN

978-3-642-21003-7
978-3-642-21004-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-21004-4_10

DOI

http://dx.doi.org/10.1007/978-3-642-21004-4_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027959299


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Grosan", 
        "givenName": "Crina", 
        "type": "Person"
      }, 
      {
        "familyName": "Abraham", 
        "givenName": "Ajith", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.cs.04.060190.002221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036425691"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Machine Learning[6][8][12] is concerned with the study of building computer programs that automatically improve and/or adapt their performance through experience. Machine learning can be thought of as \u201cprogramming by example\u201d [11]. Machine learning has many common things with other domains such as statistics and probability theory (understanding the phenomena that have generated the data), data mining (finding patterns in the data that are understandable by people) and cognitive sciences (human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people such as concept learning, skill acquisition, strategy change, etc.) [1].", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-21004-4_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-21003-7", 
        "978-3-642-21004-4"
      ], 
      "name": "Intelligent Systems", 
      "type": "Book"
    }, 
    "name": "Machine Learning", 
    "pagination": "261-268", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-21004-4_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85303814cad7cde85794821abfac395d22ae8a9c76be0ead46127ab41fa6eef4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027959299"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-21004-4_10", 
      "https://app.dimensions.ai/details/publication/pub.1027959299"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000048.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-21004-4_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21004-4_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21004-4_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21004-4_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21004-4_10'


 

This table displays all metadata directly associated to this object as RDF triples.

62 TRIPLES      22 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-21004-4_10 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4d2168bf1075408fb59d4f0e430e46b8
4 schema:citation https://doi.org/10.1146/annurev.cs.04.060190.002221
5 schema:datePublished 2011
6 schema:datePublishedReg 2011-01-01
7 schema:description Machine Learning[6][8][12] is concerned with the study of building computer programs that automatically improve and/or adapt their performance through experience. Machine learning can be thought of as “programming by example” [11]. Machine learning has many common things with other domains such as statistics and probability theory (understanding the phenomena that have generated the data), data mining (finding patterns in the data that are understandable by people) and cognitive sciences (human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people such as concept learning, skill acquisition, strategy change, etc.) [1].
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc347b37c154946e588fe1f137e20f360
12 schema:name Machine Learning
13 schema:pagination 261-268
14 schema:productId N29d3b46bffc748cbb42af8fb4cf7af85
15 Nc30ba5a2cba54ac89f3b34b087ec4853
16 Ne20e3386c5314abf89a358ab658e5c28
17 schema:publisher Nb72041c8366a42acb947884b0f17abaa
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027959299
19 https://doi.org/10.1007/978-3-642-21004-4_10
20 schema:sdDatePublished 2019-04-15T17:58
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N773c398d209642449e36228635decc7d
23 schema:url http://link.springer.com/10.1007/978-3-642-21004-4_10
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N29d3b46bffc748cbb42af8fb4cf7af85 schema:name dimensions_id
28 schema:value pub.1027959299
29 rdf:type schema:PropertyValue
30 N42b906f2f7b84502b56cc89fdcc6a282 schema:familyName Grosan
31 schema:givenName Crina
32 rdf:type schema:Person
33 N4a285fcf452e42659ed7fa7918ca1376 rdf:first Na5e3163e56fb4376959d6dd819e5b92a
34 rdf:rest rdf:nil
35 N4d2168bf1075408fb59d4f0e430e46b8 rdf:first N42b906f2f7b84502b56cc89fdcc6a282
36 rdf:rest N4a285fcf452e42659ed7fa7918ca1376
37 N773c398d209642449e36228635decc7d schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 Na5e3163e56fb4376959d6dd819e5b92a schema:familyName Abraham
40 schema:givenName Ajith
41 rdf:type schema:Person
42 Nb72041c8366a42acb947884b0f17abaa schema:location Berlin, Heidelberg
43 schema:name Springer Berlin Heidelberg
44 rdf:type schema:Organisation
45 Nc30ba5a2cba54ac89f3b34b087ec4853 schema:name doi
46 schema:value 10.1007/978-3-642-21004-4_10
47 rdf:type schema:PropertyValue
48 Nc347b37c154946e588fe1f137e20f360 schema:isbn 978-3-642-21003-7
49 978-3-642-21004-4
50 schema:name Intelligent Systems
51 rdf:type schema:Book
52 Ne20e3386c5314abf89a358ab658e5c28 schema:name readcube_id
53 schema:value 85303814cad7cde85794821abfac395d22ae8a9c76be0ead46127ab41fa6eef4
54 rdf:type schema:PropertyValue
55 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
56 schema:name Information and Computing Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
59 schema:name Artificial Intelligence and Image Processing
60 rdf:type schema:DefinedTerm
61 https://doi.org/10.1146/annurev.cs.04.060190.002221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425691
62 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...