High-Resolution Visualization Techniques: Structural Aspects View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-08-04

AUTHORS

D. Schryvers , S. Van Aert

ABSTRACT

This chapter discusses a number of conventional and advanced techniques in transmission electron microscopy used for the visualization of structural aspects of disorder and strain-induced complexity in a selection of real materials. Most examples relate to shape memory materials such as and and some to plasticity in bulk and thin films. The techniques are chosen in view of existing or potential quantitative output such as Geometric Phase Imaging based on atomic resolution images, statistical parameter estimation, tomography, and conical dark-field imaging. Clearly, this overview does not provide a complete list of present day methods for high-resolution imaging, but it should give the reader a flavour of the possibilities and potentials of transmission electron microscopy for the quantitative study of complex materials.The study of materials can be conducted on many length scales and by many different techniques and methods. For visualization techniques, despite efforts on multi-scale exercises, often the scale of the details aimed for relates closely to the dimensions of the device in mind or at most one order of magnitude smaller. A typical example of macroscopic imaging techniques is automated camera-assisted strain measurements using surface labelling techniques. Correlations between macroscopic properties and much smaller dimensions, e.g., at the nano-level, often still suffer from serious gaps in connecting results from different length scales. For functional materials, however, with properties sensitive to a change in the environment such as temperature, pressure, electric field, magnetic field, and chemical interactions, the working dimensions often immediately fall within the micro- or nano-scale so that no or little scale differences exist between the properties and the high-resolution imaging techniques. Moreover, the continuing evolution towards miniaturization of devices from functional materials even further calls for special imaging techniques with very high spatial resolution.In this chapter, the focus is on atomic or high-resolution transmission electron microscopy (HRTEM) used to collect data on a variety of real materials and problems, with the emphasis on shape memory materials. Some examples also include spectroscopic data from energy-dispersive X-ray analysis (EDX) or electron energy loss spectroscopy (EELS) and novel TEM techniques. More... »

PAGES

135-149

Book

TITLE

Disorder and Strain-Induced Complexity in Functional Materials

ISBN

978-3-642-20942-0
978-3-642-20943-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-20943-7_8

DOI

http://dx.doi.org/10.1007/978-3-642-20943-7_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040819395


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "EMAT, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schryvers", 
        "givenName": "D.", 
        "id": "sg:person.013773701247.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773701247.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "EMAT, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Aert", 
        "givenName": "S.", 
        "id": "sg:person.0611163576.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611163576.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2008.10.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003482694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2009.06.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003514321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00116-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005949197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00116-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005949197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2010.01.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006756526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultramic.2009.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007427428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2004.10.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009955050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01418618308234902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010103040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(96)00180-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010827861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786430903074755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013079778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3991(90)90002-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014467432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3991(90)90002-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014467432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3991(01)00136-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014702880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0966-9795(97)00091-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019191697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108768106036457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019382804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans1960.27.731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019547639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01418619808241907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021598466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2005.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025671072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.04.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032407887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3991(98)00035-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038531199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijplas.2010.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039287112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201004160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040076504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultramic.2005.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041935182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2006.08.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042261760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0964-1726/18/11/115018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042420605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0964-1726/18/11/115018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042420605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044380527", 
          "https://doi.org/10.1038/nmat2488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044380527", 
          "https://doi.org/10.1038/nmat2488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultramic.2007.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046111675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047067684", 
          "https://doi.org/10.1038/nmat1593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047067684", 
          "https://doi.org/10.1038/nmat1593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2007.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048170941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767397010489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049101301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2009.05.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051102702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultramic.2009.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051821941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(85)90576-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053650432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(85)90576-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053650432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.jmicro.a023805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059962128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.4030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.4030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.1535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.1535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.11319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060553071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.11319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060553071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.9301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.9301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.165707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.165707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.096106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.096106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jmems.2009.2020380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061290698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/jinstmet1952.54.8_861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084977085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470173862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470173862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661788"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-08-04", 
    "datePublishedReg": "2011-08-04", 
    "description": "This chapter discusses a number of conventional and advanced techniques in transmission electron microscopy used for the visualization of structural aspects of disorder and strain-induced complexity in a selection of real materials. Most examples relate to shape memory materials such as and and some to plasticity in bulk and thin films. The techniques are chosen in view of existing or potential quantitative output such as Geometric Phase Imaging based on atomic resolution images, statistical parameter estimation, tomography, and conical dark-field imaging. Clearly, this overview does not provide a complete list of present day methods for high-resolution imaging, but it should give the reader a flavour of the possibilities and potentials of transmission electron microscopy for the quantitative study of complex materials.The study of materials can be conducted on many length scales and by many different techniques and methods. For visualization techniques, despite efforts on multi-scale exercises, often the scale of the details aimed for relates closely to the dimensions of the device in mind or at most one order of magnitude smaller. A typical example of macroscopic imaging techniques is automated camera-assisted strain measurements using surface labelling techniques. Correlations between macroscopic properties and much smaller dimensions, e.g., at the nano-level, often still suffer from serious gaps in connecting results from different length scales. For functional materials, however, with properties sensitive to a change in the environment such as temperature, pressure, electric field, magnetic field, and chemical interactions, the working dimensions often immediately fall within the micro- or nano-scale so that no or little scale differences exist between the properties and the high-resolution imaging techniques. Moreover, the continuing evolution towards miniaturization of devices from functional materials even further calls for special imaging techniques with very high spatial resolution.In this chapter, the focus is on atomic or high-resolution transmission electron microscopy (HRTEM) used to collect data on a variety of real materials and problems, with the emphasis on shape memory materials. Some examples also include spectroscopic data from energy-dispersive X-ray analysis (EDX) or electron energy loss spectroscopy (EELS) and novel TEM techniques.", 
    "editor": [
      {
        "familyName": "Kakeshita", 
        "givenName": "Tomoyuki", 
        "type": "Person"
      }, 
      {
        "familyName": "Fukuda", 
        "givenName": "Takashi", 
        "type": "Person"
      }, 
      {
        "familyName": "Saxena", 
        "givenName": "Avadh", 
        "type": "Person"
      }, 
      {
        "familyName": "Planes", 
        "givenName": "Antoni", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-20943-7_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-20942-0", 
        "978-3-642-20943-7"
      ], 
      "name": "Disorder and Strain-Induced Complexity in Functional Materials", 
      "type": "Book"
    }, 
    "name": "High-Resolution Visualization Techniques: Structural Aspects", 
    "pagination": "135-149", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040819395"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-20943-7_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c272a50cd83d37ef20726b59c7e95d81f995822ae832e716ae5a4f1b027f52fe"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-20943-7_8", 
      "https://app.dimensions.ai/details/publication/pub.1040819395"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13099_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-20943-7_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20943-7_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20943-7_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20943-7_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20943-7_8'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      23 PREDICATES      67 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-20943-7_8 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N3d5ffd3755d344c1932365858384d16a
4 schema:citation sg:pub.10.1038/nmat1593
5 sg:pub.10.1038/nmat2488
6 https://doi.org/10.1002/9780470173862
7 https://doi.org/10.1002/adma.201004160
8 https://doi.org/10.1016/0038-1098(85)90576-9
9 https://doi.org/10.1016/0304-3991(90)90002-4
10 https://doi.org/10.1016/j.actamat.2004.10.049
11 https://doi.org/10.1016/j.actamat.2006.08.050
12 https://doi.org/10.1016/j.actamat.2007.10.001
13 https://doi.org/10.1016/j.actamat.2009.05.034
14 https://doi.org/10.1016/j.actamat.2010.04.046
15 https://doi.org/10.1016/j.ijplas.2010.05.005
16 https://doi.org/10.1016/j.scriptamat.2005.02.013
17 https://doi.org/10.1016/j.scriptamat.2008.10.025
18 https://doi.org/10.1016/j.scriptamat.2010.01.048
19 https://doi.org/10.1016/j.tsf.2009.06.062
20 https://doi.org/10.1016/j.ultramic.2005.03.001
21 https://doi.org/10.1016/j.ultramic.2007.03.004
22 https://doi.org/10.1016/j.ultramic.2009.05.010
23 https://doi.org/10.1016/j.ultramic.2009.06.002
24 https://doi.org/10.1016/s0304-3991(01)00136-x
25 https://doi.org/10.1016/s0304-3991(98)00035-7
26 https://doi.org/10.1016/s0966-9795(97)00091-5
27 https://doi.org/10.1016/s1359-6454(03)00116-2
28 https://doi.org/10.1016/s1359-6454(96)00180-2
29 https://doi.org/10.1080/01418618308234902
30 https://doi.org/10.1080/01418619808241907
31 https://doi.org/10.1080/14786430903074755
32 https://doi.org/10.1088/0964-1726/18/11/115018
33 https://doi.org/10.1093/oxfordjournals.jmicro.a023805
34 https://doi.org/10.1103/physrevb.14.4030
35 https://doi.org/10.1103/physrevb.39.1535
36 https://doi.org/10.1103/physrevb.41.11319
37 https://doi.org/10.1103/physrevb.44.9301
38 https://doi.org/10.1103/physrevlett.100.165707
39 https://doi.org/10.1103/physrevlett.96.096106
40 https://doi.org/10.1107/s0108767397010489
41 https://doi.org/10.1107/s0108768106036457
42 https://doi.org/10.1109/jmems.2009.2020380
43 https://doi.org/10.2320/jinstmet1952.54.8_861
44 https://doi.org/10.2320/matertrans1960.27.731
45 schema:datePublished 2011-08-04
46 schema:datePublishedReg 2011-08-04
47 schema:description This chapter discusses a number of conventional and advanced techniques in transmission electron microscopy used for the visualization of structural aspects of disorder and strain-induced complexity in a selection of real materials. Most examples relate to shape memory materials such as and and some to plasticity in bulk and thin films. The techniques are chosen in view of existing or potential quantitative output such as Geometric Phase Imaging based on atomic resolution images, statistical parameter estimation, tomography, and conical dark-field imaging. Clearly, this overview does not provide a complete list of present day methods for high-resolution imaging, but it should give the reader a flavour of the possibilities and potentials of transmission electron microscopy for the quantitative study of complex materials.The study of materials can be conducted on many length scales and by many different techniques and methods. For visualization techniques, despite efforts on multi-scale exercises, often the scale of the details aimed for relates closely to the dimensions of the device in mind or at most one order of magnitude smaller. A typical example of macroscopic imaging techniques is automated camera-assisted strain measurements using surface labelling techniques. Correlations between macroscopic properties and much smaller dimensions, e.g., at the nano-level, often still suffer from serious gaps in connecting results from different length scales. For functional materials, however, with properties sensitive to a change in the environment such as temperature, pressure, electric field, magnetic field, and chemical interactions, the working dimensions often immediately fall within the micro- or nano-scale so that no or little scale differences exist between the properties and the high-resolution imaging techniques. Moreover, the continuing evolution towards miniaturization of devices from functional materials even further calls for special imaging techniques with very high spatial resolution.In this chapter, the focus is on atomic or high-resolution transmission electron microscopy (HRTEM) used to collect data on a variety of real materials and problems, with the emphasis on shape memory materials. Some examples also include spectroscopic data from energy-dispersive X-ray analysis (EDX) or electron energy loss spectroscopy (EELS) and novel TEM techniques.
48 schema:editor N5be973231cf24f4ab65e5391d4539a7e
49 schema:genre chapter
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf Nb983987e353d48cbbf7a99b9f228a075
53 schema:name High-Resolution Visualization Techniques: Structural Aspects
54 schema:pagination 135-149
55 schema:productId N13eb97de8b31495bb14a42b149fff5f4
56 N4de22664021747caaa5cebc52768ea80
57 N675dbacce26e40f58774052f571cb832
58 schema:publisher Ne0fe5830e8924c14aeffe333f461efb5
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040819395
60 https://doi.org/10.1007/978-3-642-20943-7_8
61 schema:sdDatePublished 2019-04-16T09:36
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nbaacef1eeffd462788f2ee8655a8fcdb
64 schema:url https://link.springer.com/10.1007%2F978-3-642-20943-7_8
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N13eb97de8b31495bb14a42b149fff5f4 schema:name dimensions_id
69 schema:value pub.1040819395
70 rdf:type schema:PropertyValue
71 N3d5ffd3755d344c1932365858384d16a rdf:first sg:person.013773701247.34
72 rdf:rest N4964c55950374b8f9ba14c5a9592a5fb
73 N45290bc162a54b529f1e7c2625c19cd9 schema:familyName Saxena
74 schema:givenName Avadh
75 rdf:type schema:Person
76 N4964c55950374b8f9ba14c5a9592a5fb rdf:first sg:person.0611163576.39
77 rdf:rest rdf:nil
78 N4de22664021747caaa5cebc52768ea80 schema:name readcube_id
79 schema:value c272a50cd83d37ef20726b59c7e95d81f995822ae832e716ae5a4f1b027f52fe
80 rdf:type schema:PropertyValue
81 N5be973231cf24f4ab65e5391d4539a7e rdf:first Ne4c5b26030e348f08ffbcad4e9cf9420
82 rdf:rest Ne9d0448d93a14a9886a9e38450006884
83 N60dc21be83b642088dc0259ca41cddea rdf:first Nc1c333701d554d419ef9a2a09e35f386
84 rdf:rest rdf:nil
85 N675dbacce26e40f58774052f571cb832 schema:name doi
86 schema:value 10.1007/978-3-642-20943-7_8
87 rdf:type schema:PropertyValue
88 N8dc7300cbf6745bcb7bcf7b4a4b91e6e rdf:first N45290bc162a54b529f1e7c2625c19cd9
89 rdf:rest N60dc21be83b642088dc0259ca41cddea
90 Nb983987e353d48cbbf7a99b9f228a075 schema:isbn 978-3-642-20942-0
91 978-3-642-20943-7
92 schema:name Disorder and Strain-Induced Complexity in Functional Materials
93 rdf:type schema:Book
94 Nbaacef1eeffd462788f2ee8655a8fcdb schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nc1c333701d554d419ef9a2a09e35f386 schema:familyName Planes
97 schema:givenName Antoni
98 rdf:type schema:Person
99 Nc7446f93d83f46d6b82f44eb101c3246 schema:familyName Fukuda
100 schema:givenName Takashi
101 rdf:type schema:Person
102 Ne0fe5830e8924c14aeffe333f461efb5 schema:location Berlin, Heidelberg
103 schema:name Springer Berlin Heidelberg
104 rdf:type schema:Organisation
105 Ne4c5b26030e348f08ffbcad4e9cf9420 schema:familyName Kakeshita
106 schema:givenName Tomoyuki
107 rdf:type schema:Person
108 Ne9d0448d93a14a9886a9e38450006884 rdf:first Nc7446f93d83f46d6b82f44eb101c3246
109 rdf:rest N8dc7300cbf6745bcb7bcf7b4a4b91e6e
110 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
111 schema:name Physical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
114 schema:name Other Physical Sciences
115 rdf:type schema:DefinedTerm
116 sg:person.013773701247.34 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
117 schema:familyName Schryvers
118 schema:givenName D.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773701247.34
120 rdf:type schema:Person
121 sg:person.0611163576.39 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
122 schema:familyName Van Aert
123 schema:givenName S.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611163576.39
125 rdf:type schema:Person
126 sg:pub.10.1038/nmat1593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047067684
127 https://doi.org/10.1038/nmat1593
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nmat2488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044380527
130 https://doi.org/10.1038/nmat2488
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/9780470173862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661788
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/adma.201004160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040076504
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0038-1098(85)90576-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053650432
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0304-3991(90)90002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014467432
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.actamat.2004.10.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009955050
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.actamat.2006.08.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042261760
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.actamat.2007.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048170941
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.actamat.2009.05.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051102702
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.actamat.2010.04.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032407887
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ijplas.2010.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039287112
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.scriptamat.2005.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025671072
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.scriptamat.2008.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003482694
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.scriptamat.2010.01.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006756526
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.tsf.2009.06.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003514321
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.ultramic.2005.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041935182
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.ultramic.2007.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046111675
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ultramic.2009.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007427428
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ultramic.2009.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051821941
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0304-3991(01)00136-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014702880
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0304-3991(98)00035-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038531199
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0966-9795(97)00091-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019191697
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s1359-6454(03)00116-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005949197
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s1359-6454(96)00180-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010827861
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1080/01418618308234902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010103040
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/01418619808241907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021598466
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/14786430903074755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013079778
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1088/0964-1726/18/11/115018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042420605
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/oxfordjournals.jmicro.a023805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059962128
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.14.4030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521697
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.39.1535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549031
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.41.11319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060553071
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.44.9301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560278
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.100.165707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753328
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.96.096106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831880
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1107/s0108767397010489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049101301
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1107/s0108768106036457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019382804
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/jmems.2009.2020380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061290698
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2320/jinstmet1952.54.8_861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084977085
207 rdf:type schema:CreativeWork
208 https://doi.org/10.2320/matertrans1960.27.731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019547639
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
211 schema:name EMAT, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...