Benchmark 3D: A Monotone Nonlinear Finite Volume Method for Diffusion Equations on Polyhedral Meshes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-07-09

AUTHORS

Alexander Danilov , Yuri Vassilevski

ABSTRACT

We propose a new monotone FV method based on a nonlinear two-point flux approximation scheme. The original idea belongs to C. LePotier [2] who proposed a monotone FV scheme for the discretization of parabolic equations on triangular meshes, which was extended to steady-state diffusion problems with full anisotropic tensors on triangulations or scalar diffusion coefficients on shape regular polygonal meshes [3]. Later a new interpolation-freemonotone cell-centered FV method with nonlinear two-point flux approximation was proposed for full diffusion tensors and unstructured conformal polygonal 2D meshes [4]. In this paper, we extend the last approach to the case of 3D conformal polyhedral meshes [1]. More... »

PAGES

993-1003

Book

TITLE

Finite Volumes for Complex Applications VI Problems & Perspectives

ISBN

978-3-642-20670-2
978-3-642-20671-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-20671-9_97

DOI

http://dx.doi.org/10.1007/978-3-642-20671-9_97

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020662770


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Numerical Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.465296.a", 
          "name": [
            "Institute of Numerical Mathematics, Gubkina 8, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danilov", 
        "givenName": "Alexander", 
        "id": "sg:person.01040632264.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040632264.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Numerical Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.465296.a", 
          "name": [
            "Institute of Numerical Mathematics, Gubkina 8, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vassilevski", 
        "givenName": "Yuri", 
        "id": "sg:person.012104371362.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104371362.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcp.2008.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000881637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2007.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007576573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rjnamm.2009.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034163284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rjnamm.2010.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043353495"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-07-09", 
    "datePublishedReg": "2011-07-09", 
    "description": "We propose a new monotone FV method based on a nonlinear two-point flux approximation scheme. The original idea belongs to C. LePotier [2] who proposed a monotone FV scheme for the discretization of parabolic equations on triangular meshes, which was extended to steady-state diffusion problems with full anisotropic tensors on triangulations or scalar diffusion coefficients on shape regular polygonal meshes [3]. Later a new interpolation-freemonotone cell-centered FV method with nonlinear two-point flux approximation was proposed for full diffusion tensors and unstructured conformal polygonal 2D meshes [4]. In this paper, we extend the last approach to the case of 3D conformal polyhedral meshes [1].", 
    "editor": [
      {
        "familyName": "Fo\u0159t", 
        "givenName": "Jaroslav", 
        "type": "Person"
      }, 
      {
        "familyName": "F\u00fcrst", 
        "givenName": "Ji\u0159\u00ed", 
        "type": "Person"
      }, 
      {
        "familyName": "Halama", 
        "givenName": "Jan", 
        "type": "Person"
      }, 
      {
        "familyName": "Herbin", 
        "givenName": "Rapha\u00e8le", 
        "type": "Person"
      }, 
      {
        "familyName": "Hubert", 
        "givenName": "Florence", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-20671-9_97", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5354697", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5374810", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-642-20670-2", 
        "978-3-642-20671-9"
      ], 
      "name": "Finite Volumes for Complex Applications VI Problems & Perspectives", 
      "type": "Book"
    }, 
    "name": "Benchmark 3D: A Monotone Nonlinear Finite Volume Method for Diffusion Equations on Polyhedral Meshes", 
    "pagination": "993-1003", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020662770"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-20671-9_97"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6273c82de3e9cd80d82616635dbf177b1ceaee5d91d7fbb511edb8054120f4e0"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-20671-9_97", 
      "https://app.dimensions.ai/details/publication/pub.1020662770"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68971_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-20671-9_97"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20671-9_97'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20671-9_97'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20671-9_97'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20671-9_97'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      30 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-20671-9_97 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N5361087a01c840249d41f5380c504ef9
4 schema:citation https://doi.org/10.1016/j.jcp.2007.08.008
5 https://doi.org/10.1016/j.jcp.2008.09.031
6 https://doi.org/10.1515/rjnamm.2009.014
7 https://doi.org/10.1515/rjnamm.2010.022
8 schema:datePublished 2011-07-09
9 schema:datePublishedReg 2011-07-09
10 schema:description We propose a new monotone FV method based on a nonlinear two-point flux approximation scheme. The original idea belongs to C. LePotier [2] who proposed a monotone FV scheme for the discretization of parabolic equations on triangular meshes, which was extended to steady-state diffusion problems with full anisotropic tensors on triangulations or scalar diffusion coefficients on shape regular polygonal meshes [3]. Later a new interpolation-freemonotone cell-centered FV method with nonlinear two-point flux approximation was proposed for full diffusion tensors and unstructured conformal polygonal 2D meshes [4]. In this paper, we extend the last approach to the case of 3D conformal polyhedral meshes [1].
11 schema:editor N5b40cdf7ea2942588224254cd13500e5
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Ndf0a1e8680ca4c379e2d4cdf65bb96f8
16 schema:name Benchmark 3D: A Monotone Nonlinear Finite Volume Method for Diffusion Equations on Polyhedral Meshes
17 schema:pagination 993-1003
18 schema:productId N19b21b193ac34cfab4b4d34ffc6e6a04
19 N825091aaf2da420b943a1d7efb37628d
20 N98feb29b23da47d0972a01948d9ce3ea
21 schema:publisher Naac9f6ba02bd4967ab1ee166100567e2
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020662770
23 https://doi.org/10.1007/978-3-642-20671-9_97
24 schema:sdDatePublished 2019-04-16T08:58
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N1feef583df3b4c1b9f8c6b8e5a6608d3
27 schema:url https://link.springer.com/10.1007%2F978-3-642-20671-9_97
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N028893853416463f8983d863760c8425 rdf:first N530ebad3d867457797a939d53dee4153
32 rdf:rest N7ec41a394b3e4638be6ef4bd1cd42c51
33 N19b21b193ac34cfab4b4d34ffc6e6a04 schema:name readcube_id
34 schema:value 6273c82de3e9cd80d82616635dbf177b1ceaee5d91d7fbb511edb8054120f4e0
35 rdf:type schema:PropertyValue
36 N1feef583df3b4c1b9f8c6b8e5a6608d3 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N3ac3ab4d3ebc4679b9a3ca2d8771379c schema:familyName Fořt
39 schema:givenName Jaroslav
40 rdf:type schema:Person
41 N4abb79f7554343008c2987feeb16b7a6 schema:familyName Halama
42 schema:givenName Jan
43 rdf:type schema:Person
44 N530ebad3d867457797a939d53dee4153 schema:familyName Fürst
45 schema:givenName Jiří
46 rdf:type schema:Person
47 N5361087a01c840249d41f5380c504ef9 rdf:first sg:person.01040632264.01
48 rdf:rest N6c47f739bff44ea08aff4b16b2725f01
49 N5b40cdf7ea2942588224254cd13500e5 rdf:first N3ac3ab4d3ebc4679b9a3ca2d8771379c
50 rdf:rest N028893853416463f8983d863760c8425
51 N5c39bb2091bf45a5a880425601197641 schema:familyName Herbin
52 schema:givenName Raphaèle
53 rdf:type schema:Person
54 N6c47f739bff44ea08aff4b16b2725f01 rdf:first sg:person.012104371362.91
55 rdf:rest rdf:nil
56 N7ec41a394b3e4638be6ef4bd1cd42c51 rdf:first N4abb79f7554343008c2987feeb16b7a6
57 rdf:rest Nb456ba05e1b94c75b179bfe2f4be8b6f
58 N825091aaf2da420b943a1d7efb37628d schema:name doi
59 schema:value 10.1007/978-3-642-20671-9_97
60 rdf:type schema:PropertyValue
61 N86bcf58ac5a04a0eaa6c45112d6bbb8a rdf:first N923d281629de437892dc0c8fa7e52cd3
62 rdf:rest rdf:nil
63 N923d281629de437892dc0c8fa7e52cd3 schema:familyName Hubert
64 schema:givenName Florence
65 rdf:type schema:Person
66 N98feb29b23da47d0972a01948d9ce3ea schema:name dimensions_id
67 schema:value pub.1020662770
68 rdf:type schema:PropertyValue
69 Naac9f6ba02bd4967ab1ee166100567e2 schema:location Berlin, Heidelberg
70 schema:name Springer Berlin Heidelberg
71 rdf:type schema:Organisation
72 Nb456ba05e1b94c75b179bfe2f4be8b6f rdf:first N5c39bb2091bf45a5a880425601197641
73 rdf:rest N86bcf58ac5a04a0eaa6c45112d6bbb8a
74 Ndf0a1e8680ca4c379e2d4cdf65bb96f8 schema:isbn 978-3-642-20670-2
75 978-3-642-20671-9
76 schema:name Finite Volumes for Complex Applications VI Problems & Perspectives
77 rdf:type schema:Book
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
82 schema:name Numerical and Computational Mathematics
83 rdf:type schema:DefinedTerm
84 sg:grant.5354697 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-642-20671-9_97
85 rdf:type schema:MonetaryGrant
86 sg:grant.5374810 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-642-20671-9_97
87 rdf:type schema:MonetaryGrant
88 sg:person.01040632264.01 schema:affiliation https://www.grid.ac/institutes/grid.465296.a
89 schema:familyName Danilov
90 schema:givenName Alexander
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040632264.01
92 rdf:type schema:Person
93 sg:person.012104371362.91 schema:affiliation https://www.grid.ac/institutes/grid.465296.a
94 schema:familyName Vassilevski
95 schema:givenName Yuri
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104371362.91
97 rdf:type schema:Person
98 https://doi.org/10.1016/j.jcp.2007.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007576573
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.jcp.2008.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000881637
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1515/rjnamm.2009.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034163284
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1515/rjnamm.2010.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043353495
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.465296.a schema:alternateName Institute of Numerical Mathematics
107 schema:name Institute of Numerical Mathematics, Gubkina 8, 119333, Moscow, Russia
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...