Application of Nonlinear Monotone Finite Volume Schemes to Advection-Diffusion Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-07-09

AUTHORS

Yuri Vassilevski , Alexander Danilov , Ivan Kapyrin , Kirill Nikitin

ABSTRACT

Two conservative schemes for the nonstationary advection-diffusion equation featuring nonlinear monotone finite volume methods (FVMON) are considered. The first one is an operator-splitting scheme which uses discontinuous finite elements for the advection operator discretization and FVMON for the diffusion operator. The second one introduces another type of FVMON and is implicit second-order BDF in time. A brief description of the schemes and their properties is given. A numerical study is conducted in order to check their convergence and to compare them with conventional methods. More... »

PAGES

761-769

Book

TITLE

Finite Volumes for Complex Applications VI Problems & Perspectives

ISBN

978-3-642-20670-2
978-3-642-20671-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-20671-9_80

DOI

http://dx.doi.org/10.1007/978-3-642-20671-9_80

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042205846


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Numerical Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.465296.a", 
          "name": [
            "Institute of Numerical Mathematics RAS, 8 Gubkina, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vassilevski", 
        "givenName": "Yuri", 
        "id": "sg:person.012104371362.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104371362.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Numerical Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.465296.a", 
          "name": [
            "Institute of Numerical Mathematics RAS, 8 Gubkina, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danilov", 
        "givenName": "Alexander", 
        "id": "sg:person.01040632264.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040632264.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Numerical Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.465296.a", 
          "name": [
            "Institute of Numerical Mathematics RAS, 8 Gubkina, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kapyrin", 
        "givenName": "Ivan", 
        "id": "sg:person.013753677707.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753677707.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Numerical Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.465296.a", 
          "name": [
            "Institute of Numerical Mathematics RAS, 8 Gubkina, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikitin", 
        "givenName": "Kirill", 
        "id": "sg:person.011754555076.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754555076.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcp.2008.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000881637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr026i007p01475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017815555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0363(19970330)24:6<595::aid-fld512>3.0.co;2-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022850135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rjnamm.2009.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034163284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1064562407050249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039880082", 
          "https://doi.org/10.1134/s1064562407050249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rjnamm.2010.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043353495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2010.01.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047169578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542508080071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052088943", 
          "https://doi.org/10.1134/s0965542508080071"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-07-09", 
    "datePublishedReg": "2011-07-09", 
    "description": "Two conservative schemes for the nonstationary advection-diffusion equation featuring nonlinear monotone finite volume methods (FVMON) are considered. The first one is an operator-splitting scheme which uses discontinuous finite elements for the advection operator discretization and FVMON for the diffusion operator. The second one introduces another type of FVMON and is implicit second-order BDF in time. A brief description of the schemes and their properties is given. A numerical study is conducted in order to check their convergence and to compare them with conventional methods.", 
    "editor": [
      {
        "familyName": "Fo\u0159t", 
        "givenName": "Jaroslav", 
        "type": "Person"
      }, 
      {
        "familyName": "F\u00fcrst", 
        "givenName": "Ji\u0159\u00ed", 
        "type": "Person"
      }, 
      {
        "familyName": "Halama", 
        "givenName": "Jan", 
        "type": "Person"
      }, 
      {
        "familyName": "Herbin", 
        "givenName": "Rapha\u00e8le", 
        "type": "Person"
      }, 
      {
        "familyName": "Hubert", 
        "givenName": "Florence", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-20671-9_80", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5354697", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5374810", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-642-20670-2", 
        "978-3-642-20671-9"
      ], 
      "name": "Finite Volumes for Complex Applications VI Problems & Perspectives", 
      "type": "Book"
    }, 
    "name": "Application of Nonlinear Monotone Finite Volume Schemes to Advection-Diffusion Problems", 
    "pagination": "761-769", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042205846"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-20671-9_80"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c90c3a6fc74793db37066e46bc61f194a9d3d2d7ea29ec4f60337942a434e5fb"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-20671-9_80", 
      "https://app.dimensions.ai/details/publication/pub.1042205846"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68969_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-20671-9_80"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20671-9_80'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20671-9_80'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20671-9_80'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20671-9_80'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      23 PREDICATES      34 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-20671-9_80 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Ne97db009e35f4e30aa591eb7c36c618e
4 schema:citation sg:pub.10.1134/s0965542508080071
5 sg:pub.10.1134/s1064562407050249
6 https://doi.org/10.1002/(sici)1097-0363(19970330)24:6<595::aid-fld512>3.0.co;2-i
7 https://doi.org/10.1016/j.jcp.2008.09.031
8 https://doi.org/10.1016/j.jcp.2010.01.035
9 https://doi.org/10.1029/wr026i007p01475
10 https://doi.org/10.1515/rjnamm.2009.014
11 https://doi.org/10.1515/rjnamm.2010.022
12 schema:datePublished 2011-07-09
13 schema:datePublishedReg 2011-07-09
14 schema:description Two conservative schemes for the nonstationary advection-diffusion equation featuring nonlinear monotone finite volume methods (FVMON) are considered. The first one is an operator-splitting scheme which uses discontinuous finite elements for the advection operator discretization and FVMON for the diffusion operator. The second one introduces another type of FVMON and is implicit second-order BDF in time. A brief description of the schemes and their properties is given. A numerical study is conducted in order to check their convergence and to compare them with conventional methods.
15 schema:editor N3adadbd91c914c60b48e04d6270dce4d
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N52344fd4f3b34a3ab49f311bbf6a960a
20 schema:name Application of Nonlinear Monotone Finite Volume Schemes to Advection-Diffusion Problems
21 schema:pagination 761-769
22 schema:productId N05900c01e80342ae9ccd92c0f2e4fa71
23 N0fbdc2a3b6f744b68714d5ca70877c24
24 N1b68989f752e46dfb1a1f687e3f4f76b
25 schema:publisher N29ddc47dfa144968b3eb6d2db6a55e45
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042205846
27 https://doi.org/10.1007/978-3-642-20671-9_80
28 schema:sdDatePublished 2019-04-16T08:57
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N3723ce465ead4ca985504cef50ad6627
31 schema:url https://link.springer.com/10.1007%2F978-3-642-20671-9_80
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N05900c01e80342ae9ccd92c0f2e4fa71 schema:name doi
36 schema:value 10.1007/978-3-642-20671-9_80
37 rdf:type schema:PropertyValue
38 N09f5240c27964877acf8bbe5fa565638 rdf:first N49ee10bb3bce4365b48704fd717ca40d
39 rdf:rest rdf:nil
40 N0fbdc2a3b6f744b68714d5ca70877c24 schema:name readcube_id
41 schema:value c90c3a6fc74793db37066e46bc61f194a9d3d2d7ea29ec4f60337942a434e5fb
42 rdf:type schema:PropertyValue
43 N1b68989f752e46dfb1a1f687e3f4f76b schema:name dimensions_id
44 schema:value pub.1042205846
45 rdf:type schema:PropertyValue
46 N222ef158538e4c388b2e3ba659b67e1c schema:familyName Fořt
47 schema:givenName Jaroslav
48 rdf:type schema:Person
49 N29ddc47dfa144968b3eb6d2db6a55e45 schema:location Berlin, Heidelberg
50 schema:name Springer Berlin Heidelberg
51 rdf:type schema:Organisation
52 N3723ce465ead4ca985504cef50ad6627 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N3adadbd91c914c60b48e04d6270dce4d rdf:first N222ef158538e4c388b2e3ba659b67e1c
55 rdf:rest N7783e23a447f44be9ff77844786821fd
56 N429f3d1fbb9b4b10b439e421f49a2dbe rdf:first sg:person.013753677707.93
57 rdf:rest Ncf46fe53d4a14981866c6469fb86e3d9
58 N49ee10bb3bce4365b48704fd717ca40d schema:familyName Hubert
59 schema:givenName Florence
60 rdf:type schema:Person
61 N52344fd4f3b34a3ab49f311bbf6a960a schema:isbn 978-3-642-20670-2
62 978-3-642-20671-9
63 schema:name Finite Volumes for Complex Applications VI Problems & Perspectives
64 rdf:type schema:Book
65 N6dede36323624f64b0033ec34a8fb976 rdf:first Nd2c5091176cd4ebea99f32ae6db104c4
66 rdf:rest Nabb82a6ee0e74b3db387654e0f3d7173
67 N7783e23a447f44be9ff77844786821fd rdf:first Na5b774f2615a480d90eacbc909602420
68 rdf:rest N6dede36323624f64b0033ec34a8fb976
69 Na5b774f2615a480d90eacbc909602420 schema:familyName Fürst
70 schema:givenName Jiří
71 rdf:type schema:Person
72 Nabb82a6ee0e74b3db387654e0f3d7173 rdf:first Nfa250c5447744369b63c3950dd57bb1e
73 rdf:rest N09f5240c27964877acf8bbe5fa565638
74 Ncf46fe53d4a14981866c6469fb86e3d9 rdf:first sg:person.011754555076.30
75 rdf:rest rdf:nil
76 Nd2c5091176cd4ebea99f32ae6db104c4 schema:familyName Halama
77 schema:givenName Jan
78 rdf:type schema:Person
79 Ndfc552e6a0424398849fe8aa0a0182c0 rdf:first sg:person.01040632264.01
80 rdf:rest N429f3d1fbb9b4b10b439e421f49a2dbe
81 Ne97db009e35f4e30aa591eb7c36c618e rdf:first sg:person.012104371362.91
82 rdf:rest Ndfc552e6a0424398849fe8aa0a0182c0
83 Nfa250c5447744369b63c3950dd57bb1e schema:familyName Herbin
84 schema:givenName Raphaèle
85 rdf:type schema:Person
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
90 schema:name Numerical and Computational Mathematics
91 rdf:type schema:DefinedTerm
92 sg:grant.5354697 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-642-20671-9_80
93 rdf:type schema:MonetaryGrant
94 sg:grant.5374810 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-642-20671-9_80
95 rdf:type schema:MonetaryGrant
96 sg:person.01040632264.01 schema:affiliation https://www.grid.ac/institutes/grid.465296.a
97 schema:familyName Danilov
98 schema:givenName Alexander
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040632264.01
100 rdf:type schema:Person
101 sg:person.011754555076.30 schema:affiliation https://www.grid.ac/institutes/grid.465296.a
102 schema:familyName Nikitin
103 schema:givenName Kirill
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754555076.30
105 rdf:type schema:Person
106 sg:person.012104371362.91 schema:affiliation https://www.grid.ac/institutes/grid.465296.a
107 schema:familyName Vassilevski
108 schema:givenName Yuri
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104371362.91
110 rdf:type schema:Person
111 sg:person.013753677707.93 schema:affiliation https://www.grid.ac/institutes/grid.465296.a
112 schema:familyName Kapyrin
113 schema:givenName Ivan
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753677707.93
115 rdf:type schema:Person
116 sg:pub.10.1134/s0965542508080071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052088943
117 https://doi.org/10.1134/s0965542508080071
118 rdf:type schema:CreativeWork
119 sg:pub.10.1134/s1064562407050249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039880082
120 https://doi.org/10.1134/s1064562407050249
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/(sici)1097-0363(19970330)24:6<595::aid-fld512>3.0.co;2-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1022850135
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jcp.2008.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000881637
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jcp.2010.01.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047169578
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1029/wr026i007p01475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017815555
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1515/rjnamm.2009.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034163284
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1515/rjnamm.2010.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043353495
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.465296.a schema:alternateName Institute of Numerical Mathematics
135 schema:name Institute of Numerical Mathematics RAS, 8 Gubkina, 119333, Moscow, Russia
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...