Revising Process Models through Inductive Learning View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Fabrizio Maria Maggi , Domenico Corapi , Alessandra Russo , Emil Lupu , Giuseppe Visaggio

ABSTRACT

Discovering the Business Process (BP) model underpinning existing practices through analysis of event logs, allows users to understand, analyse and modify the process. But, to be useful, the BP model must be kept in line with practice throughout its lifetime, as changes occur to the business objectives, technologies and quality programs. Current techniques require users to manually revise the BP to account for discrepancies between the practice and the model, which is a laborious, costly and error prone task. We propose an automated approach for resolving such discrepancies by minimally revising a BP model to bring it in line with the activities corresponding to its executions, based on a non-monotonic inductive learning system. We discuss our implementation of this approach and demonstrate its application to a case-study. We further contrast our approach with existing BP discovery techniques to show that BP revision offers significant advantages over BP discovery in practical use. More... »

PAGES

182-193

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-20511-8_16

DOI

http://dx.doi.org/10.1007/978-3-642-20511-8_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034876474


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maggi", 
        "givenName": "Fabrizio Maria", 
        "id": "sg:person.013145177327.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013145177327.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computing, Imperial College London, 180 Queen\u2019s Gate, SW7 2AZ, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Computing, Imperial College London, 180 Queen\u2019s Gate, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corapi", 
        "givenName": "Domenico", 
        "id": "sg:person.016226323127.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226323127.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computing, Imperial College London, 180 Queen\u2019s Gate, SW7 2AZ, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Computing, Imperial College London, 180 Queen\u2019s Gate, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Russo", 
        "givenName": "Alessandra", 
        "id": "sg:person.016530745554.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530745554.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computing, Imperial College London, 180 Queen\u2019s Gate, SW7 2AZ, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Computing, Imperial College London, 180 Queen\u2019s Gate, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lupu", 
        "givenName": "Emil", 
        "id": "sg:person.013404167044.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013404167044.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Bari, Via Orabona 4, 70126, Bari, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7644.1", 
          "name": [
            "Department of Computer Science, University of Bari, Via Orabona 4, 70126, Bari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visaggio", 
        "givenName": "Giuseppe", 
        "id": "sg:person.014365663663.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365663663.03"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Discovering the Business Process (BP) model underpinning existing practices through analysis of event logs, allows users to understand, analyse and modify the process. But, to be useful, the BP model must be kept in line with practice throughout its lifetime, as changes occur to the business objectives, technologies and quality programs. Current techniques require users to manually revise the BP to account for discrepancies between the practice and the model, which is a laborious, costly and error prone task. We propose an automated approach for resolving such discrepancies by minimally revising a BP model to bring it in line with the activities corresponding to its executions, based on a non-monotonic inductive learning system. We discuss our implementation of this approach and demonstrate its application to a case-study. We further contrast our approach with existing BP discovery techniques to show that BP revision offers significant advantages over BP discovery in practical use.", 
    "editor": [
      {
        "familyName": "zur Muehlen", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Su", 
        "givenName": "Jianwen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-20511-8_16", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-20510-1", 
        "978-3-642-20511-8"
      ], 
      "name": "Business Process Management Workshops", 
      "type": "Book"
    }, 
    "keywords": [
      "business process models", 
      "error-prone task", 
      "inductive learning system", 
      "process model", 
      "BP model", 
      "prone task", 
      "event logs", 
      "discovery techniques", 
      "inductive learning", 
      "learning system", 
      "business objectives", 
      "users", 
      "current techniques", 
      "practical use", 
      "execution", 
      "significant advantages", 
      "task", 
      "learning", 
      "implementation", 
      "model", 
      "technology", 
      "technique", 
      "logs", 
      "applications", 
      "system", 
      "advantages", 
      "quality programs", 
      "discovery", 
      "practice", 
      "lifetime", 
      "process", 
      "program", 
      "use", 
      "objective", 
      "analyse", 
      "such discrepancies", 
      "analysis", 
      "lines", 
      "discrepancy", 
      "revision", 
      "activity", 
      "changes", 
      "BP", 
      "approach"
    ], 
    "name": "Revising Process Models through Inductive Learning", 
    "pagination": "182-193", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034876474"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-20511-8_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-20511-8_16", 
      "https://app.dimensions.ai/details/publication/pub.1034876474"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_202.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-20511-8_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20511-8_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20511-8_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20511-8_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20511-8_16'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      22 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-20511-8_16 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nc3827d1314dc46f1a00c6a9cc72dcd17
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description Discovering the Business Process (BP) model underpinning existing practices through analysis of event logs, allows users to understand, analyse and modify the process. But, to be useful, the BP model must be kept in line with practice throughout its lifetime, as changes occur to the business objectives, technologies and quality programs. Current techniques require users to manually revise the BP to account for discrepancies between the practice and the model, which is a laborious, costly and error prone task. We propose an automated approach for resolving such discrepancies by minimally revising a BP model to bring it in line with the activities corresponding to its executions, based on a non-monotonic inductive learning system. We discuss our implementation of this approach and demonstrate its application to a case-study. We further contrast our approach with existing BP discovery techniques to show that BP revision offers significant advantages over BP discovery in practical use.
7 schema:editor N02dc8495e95641cda65f19f99442d3fa
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nf9c9eed69c834a1ebd1edd744ce83b16
11 schema:keywords BP
12 BP model
13 activity
14 advantages
15 analyse
16 analysis
17 applications
18 approach
19 business objectives
20 business process models
21 changes
22 current techniques
23 discovery
24 discovery techniques
25 discrepancy
26 error-prone task
27 event logs
28 execution
29 implementation
30 inductive learning
31 inductive learning system
32 learning
33 learning system
34 lifetime
35 lines
36 logs
37 model
38 objective
39 practical use
40 practice
41 process
42 process model
43 program
44 prone task
45 quality programs
46 revision
47 significant advantages
48 such discrepancies
49 system
50 task
51 technique
52 technology
53 use
54 users
55 schema:name Revising Process Models through Inductive Learning
56 schema:pagination 182-193
57 schema:productId N294d26170e374e04be875bf53f7476cb
58 N80a97c5ae74048afb2460495d4c8f369
59 schema:publisher Nfb6ecabe2a884c539a89d39062f7f0a9
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034876474
61 https://doi.org/10.1007/978-3-642-20511-8_16
62 schema:sdDatePublished 2022-10-01T06:54
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N763ba632241f491fb30ffde7e76ebc26
65 schema:url https://doi.org/10.1007/978-3-642-20511-8_16
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N02dc8495e95641cda65f19f99442d3fa rdf:first Nd63fbf2f1f364b9cbcf719b036ac32fb
70 rdf:rest N6fd261efbb82409d829a4e71dfb6583e
71 N05d2aa443bee4c9595a9c4d51ec243ce rdf:first sg:person.016226323127.74
72 rdf:rest Nc1fe0bfa87fe4f5e92f1172b24a24666
73 N294d26170e374e04be875bf53f7476cb schema:name dimensions_id
74 schema:value pub.1034876474
75 rdf:type schema:PropertyValue
76 N6fd261efbb82409d829a4e71dfb6583e rdf:first Nad33ca4fc2554454aa6674329a18730b
77 rdf:rest rdf:nil
78 N763ba632241f491fb30ffde7e76ebc26 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N80a97c5ae74048afb2460495d4c8f369 schema:name doi
81 schema:value 10.1007/978-3-642-20511-8_16
82 rdf:type schema:PropertyValue
83 Na12ea863b9fb4ac08faf310f65d922b0 rdf:first sg:person.014365663663.03
84 rdf:rest rdf:nil
85 Nad33ca4fc2554454aa6674329a18730b schema:familyName Su
86 schema:givenName Jianwen
87 rdf:type schema:Person
88 Nb18bdcb2c8a54ec4a92e420243033036 rdf:first sg:person.013404167044.28
89 rdf:rest Na12ea863b9fb4ac08faf310f65d922b0
90 Nc1fe0bfa87fe4f5e92f1172b24a24666 rdf:first sg:person.016530745554.01
91 rdf:rest Nb18bdcb2c8a54ec4a92e420243033036
92 Nc3827d1314dc46f1a00c6a9cc72dcd17 rdf:first sg:person.013145177327.48
93 rdf:rest N05d2aa443bee4c9595a9c4d51ec243ce
94 Nd63fbf2f1f364b9cbcf719b036ac32fb schema:familyName zur Muehlen
95 schema:givenName Michael
96 rdf:type schema:Person
97 Nf9c9eed69c834a1ebd1edd744ce83b16 schema:isbn 978-3-642-20510-1
98 978-3-642-20511-8
99 schema:name Business Process Management Workshops
100 rdf:type schema:Book
101 Nfb6ecabe2a884c539a89d39062f7f0a9 schema:name Springer Nature
102 rdf:type schema:Organisation
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information Systems
108 rdf:type schema:DefinedTerm
109 sg:person.013145177327.48 schema:affiliation grid-institutes:grid.6852.9
110 schema:familyName Maggi
111 schema:givenName Fabrizio Maria
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013145177327.48
113 rdf:type schema:Person
114 sg:person.013404167044.28 schema:affiliation grid-institutes:grid.7445.2
115 schema:familyName Lupu
116 schema:givenName Emil
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013404167044.28
118 rdf:type schema:Person
119 sg:person.014365663663.03 schema:affiliation grid-institutes:grid.7644.1
120 schema:familyName Visaggio
121 schema:givenName Giuseppe
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365663663.03
123 rdf:type schema:Person
124 sg:person.016226323127.74 schema:affiliation grid-institutes:grid.7445.2
125 schema:familyName Corapi
126 schema:givenName Domenico
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226323127.74
128 rdf:type schema:Person
129 sg:person.016530745554.01 schema:affiliation grid-institutes:grid.7445.2
130 schema:familyName Russo
131 schema:givenName Alessandra
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530745554.01
133 rdf:type schema:Person
134 grid-institutes:grid.6852.9 schema:alternateName Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
135 schema:name Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
136 rdf:type schema:Organization
137 grid-institutes:grid.7445.2 schema:alternateName Department of Computing, Imperial College London, 180 Queen’s Gate, SW7 2AZ, London, UK
138 schema:name Department of Computing, Imperial College London, 180 Queen’s Gate, SW7 2AZ, London, UK
139 rdf:type schema:Organization
140 grid-institutes:grid.7644.1 schema:alternateName Department of Computer Science, University of Bari, Via Orabona 4, 70126, Bari, Italy
141 schema:name Department of Computer Science, University of Bari, Via Orabona 4, 70126, Bari, Italy
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...