Kernel Networks with Fixed and Variable Widths View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Věra Kůrková , Paul C. Kainen

ABSTRACT

The role of width in kernel models and radial-basis function networks is investigated with a special emphasis on the Gaussian case. Quantitative bounds are given on kernel-based regularization showing the effect of changing the width. These bounds are shown to be d-th powers of width ratios, and so they are exponential in the dimension of input data. More... »

PAGES

12-21

References to SciGraph publications

Book

TITLE

Adaptive and Natural Computing Algorithms

ISBN

978-3-642-20281-0
978-3-642-20282-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-20282-7_2

DOI

http://dx.doi.org/10.1007/978-3-642-20282-7_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037287340


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Computer Science", 
          "id": "https://www.grid.ac/institutes/grid.448092.3", 
          "name": [
            "Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vod\u00e1renskou v\u011b\u017e\u00ed 2, Prague 8, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u016frkov\u00e1", 
        "givenName": "V\u011bra", 
        "id": "sg:person.0627676237.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627676237.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgetown University", 
          "id": "https://www.grid.ac/institutes/grid.213910.8", 
          "name": [
            "Department of Mathematics, Georgetown University, 20057-1233, Washington, D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kainen", 
        "givenName": "Paul C.", 
        "id": "sg:person.013607306243.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607306243.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-1950-0051437-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008121516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jco.2008.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012924594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016907700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-2097-1_111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017958816", 
          "https://doi.org/10.1007/978-1-4471-2097-1_111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-01-00923-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031707307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1993.5.2.305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044931638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1991.3.2.246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048705139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1995.7.2.219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050102216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jigpal/jzi041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059797692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2005.860474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.247.4945.978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062539183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/5314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098871684"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "The role of width in kernel models and radial-basis function networks is investigated with a special emphasis on the Gaussian case. Quantitative bounds are given on kernel-based regularization showing the effect of changing the width. These bounds are shown to be d-th powers of width ratios, and so they are exponential in the dimension of input data.", 
    "editor": [
      {
        "familyName": "Dobnikar", 
        "givenName": "Andrej", 
        "type": "Person"
      }, 
      {
        "familyName": "Lotri\u010d", 
        "givenName": "Uro\u0161", 
        "type": "Person"
      }, 
      {
        "familyName": "\u0160ter", 
        "givenName": "Branko", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-20282-7_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-20281-0", 
        "978-3-642-20282-7"
      ], 
      "name": "Adaptive and Natural Computing Algorithms", 
      "type": "Book"
    }, 
    "name": "Kernel Networks with Fixed and Variable Widths", 
    "pagination": "12-21", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037287340"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-20282-7_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b19ff1ad551f6ac8bbad3ddc945661cb7eb22480abc97e7fe64e6a6c73382be2"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-20282-7_2", 
      "https://app.dimensions.ai/details/publication/pub.1037287340"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112054_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-20282-7_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20282-7_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20282-7_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20282-7_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-20282-7_2'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-20282-7_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9ae826af48b148fe88d6fd9fc0599b07
4 schema:citation sg:pub.10.1007/978-1-4471-2097-1_111
5 https://doi.org/10.1016/j.jco.2008.08.001
6 https://doi.org/10.1090/s0002-9947-1950-0051437-7
7 https://doi.org/10.1090/s0273-0979-01-00923-5
8 https://doi.org/10.1093/jigpal/jzi041
9 https://doi.org/10.1109/tit.2005.860474
10 https://doi.org/10.1126/science.247.4945.978
11 https://doi.org/10.1137/1.9781611970128
12 https://doi.org/10.1142/5314
13 https://doi.org/10.1162/089976698300017269
14 https://doi.org/10.1162/neco.1991.3.2.246
15 https://doi.org/10.1162/neco.1993.5.2.305
16 https://doi.org/10.1162/neco.1995.7.2.219
17 schema:datePublished 2011
18 schema:datePublishedReg 2011-01-01
19 schema:description The role of width in kernel models and radial-basis function networks is investigated with a special emphasis on the Gaussian case. Quantitative bounds are given on kernel-based regularization showing the effect of changing the width. These bounds are shown to be d-th powers of width ratios, and so they are exponential in the dimension of input data.
20 schema:editor N8875fac527544b4aa550a232d230bc4b
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N7e86a0910d33416a9034fa076bb87e84
25 schema:name Kernel Networks with Fixed and Variable Widths
26 schema:pagination 12-21
27 schema:productId N1c18b6a6de184d0b8bc7f04327e7ad46
28 Nda877cbb17ab4713906df51771c2cf1b
29 Ne350bd8c21b6437bbfca42353a2beaab
30 schema:publisher Na9da151e3c0d4cc89805b42d948854fa
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037287340
32 https://doi.org/10.1007/978-3-642-20282-7_2
33 schema:sdDatePublished 2019-04-16T08:42
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nafd490029d2f450a9e176703196aa1e4
36 schema:url https://link.springer.com/10.1007%2F978-3-642-20282-7_2
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N0861ad69385d4ee2a3fe1c714c95891b schema:familyName Lotrič
41 schema:givenName Uroš
42 rdf:type schema:Person
43 N1c18b6a6de184d0b8bc7f04327e7ad46 schema:name readcube_id
44 schema:value b19ff1ad551f6ac8bbad3ddc945661cb7eb22480abc97e7fe64e6a6c73382be2
45 rdf:type schema:PropertyValue
46 N4966838e2892431a802ddccb37a15bcc rdf:first N0861ad69385d4ee2a3fe1c714c95891b
47 rdf:rest Nf6b3a362d51c48dfbd745ba633436a7b
48 N71265a38a49f4b2599825ee07c872775 schema:familyName Šter
49 schema:givenName Branko
50 rdf:type schema:Person
51 N7e86a0910d33416a9034fa076bb87e84 schema:isbn 978-3-642-20281-0
52 978-3-642-20282-7
53 schema:name Adaptive and Natural Computing Algorithms
54 rdf:type schema:Book
55 N8875fac527544b4aa550a232d230bc4b rdf:first N9f38096d8ad740a98ea2c3dea0ef75a6
56 rdf:rest N4966838e2892431a802ddccb37a15bcc
57 N89bffef86ed149589def8283855a0124 rdf:first sg:person.013607306243.38
58 rdf:rest rdf:nil
59 N9ae826af48b148fe88d6fd9fc0599b07 rdf:first sg:person.0627676237.51
60 rdf:rest N89bffef86ed149589def8283855a0124
61 N9f38096d8ad740a98ea2c3dea0ef75a6 schema:familyName Dobnikar
62 schema:givenName Andrej
63 rdf:type schema:Person
64 Na9da151e3c0d4cc89805b42d948854fa schema:location Berlin, Heidelberg
65 schema:name Springer Berlin Heidelberg
66 rdf:type schema:Organisation
67 Nafd490029d2f450a9e176703196aa1e4 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nda877cbb17ab4713906df51771c2cf1b schema:name doi
70 schema:value 10.1007/978-3-642-20282-7_2
71 rdf:type schema:PropertyValue
72 Ne350bd8c21b6437bbfca42353a2beaab schema:name dimensions_id
73 schema:value pub.1037287340
74 rdf:type schema:PropertyValue
75 Nf6b3a362d51c48dfbd745ba633436a7b rdf:first N71265a38a49f4b2599825ee07c872775
76 rdf:rest rdf:nil
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:person.013607306243.38 schema:affiliation https://www.grid.ac/institutes/grid.213910.8
84 schema:familyName Kainen
85 schema:givenName Paul C.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607306243.38
87 rdf:type schema:Person
88 sg:person.0627676237.51 schema:affiliation https://www.grid.ac/institutes/grid.448092.3
89 schema:familyName Kůrková
90 schema:givenName Věra
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627676237.51
92 rdf:type schema:Person
93 sg:pub.10.1007/978-1-4471-2097-1_111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017958816
94 https://doi.org/10.1007/978-1-4471-2097-1_111
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.jco.2008.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012924594
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1090/s0002-9947-1950-0051437-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008121516
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1090/s0273-0979-01-00923-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031707307
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1093/jigpal/jzi041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059797692
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/tit.2005.860474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650763
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1126/science.247.4945.978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062539183
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1137/1.9781611970128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555835
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1142/5314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098871684
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1162/089976698300017269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016907700
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1162/neco.1991.3.2.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048705139
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1162/neco.1993.5.2.305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044931638
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1162/neco.1995.7.2.219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050102216
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.213910.8 schema:alternateName Georgetown University
121 schema:name Department of Mathematics, Georgetown University, 20057-1233, Washington, D.C., USA
122 rdf:type schema:Organization
123 https://www.grid.ac/institutes/grid.448092.3 schema:alternateName Institute of Computer Science
124 schema:name Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 2, Prague 8, Czech Republic
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...