Semantic Complex Event Reasoning—Beyond Complex Event Processing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Nenad Stojanovic , Ljiljana Stojanovic , Darko Anicic , Jun Ma , Sinan Sen , Roland Stühmer

ABSTRACT

Complex event processing is about processing huge amounts of information in real time, in a rather complex way. The degree of complexity is determined by the level of the interdependencies between information to be processed. There are several more or less traditional operators for defining these interdependencies, which are supported by existing approaches and the main competition is around the speed (throughput) of processing. However, novel application domains like Future Internet are challenging complex event processing for a more comprehensive approach: from how to create complex event patterns over the heterogeneous event sources (including textual data), to how to efficiently detect them in a distributed setting, including the usage of background knowledge. In this chapter we present an approach for intelligent CEP (iCEP) based on the usage of semantic technologies. It represents an end-to-end solution for iCEP starting from the definition of complex event patterns, through intelligent detection, to advanced 3-D visualization of complex events. At the center of the approach is the semantic model of complex events that alleviates the process of creating and maintaining complex event patterns. The approach utilizes logic-based processing for including domain knowledge in the complex event detection process, leading to complex event reasoning. This approach has been implemented in the web-based framework called iCEP Studio. More... »

PAGES

253-279

Book

TITLE

Foundations for the Web of Information and Services

ISBN

978-3-642-19796-3
978-3-642-19797-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-19797-0_14

DOI

http://dx.doi.org/10.1007/978-3-642-19797-0_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041184002


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "FZI Forschungszentrum Informatik, Karlsruhe, Germany", 
          "id": "http://www.grid.ac/institutes/grid.28541.3a", 
          "name": [
            "FZI Forschungszentrum Informatik, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stojanovic", 
        "givenName": "Nenad", 
        "id": "sg:person.011564632227.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011564632227.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FZI Forschungszentrum Informatik, Karlsruhe, Germany", 
          "id": "http://www.grid.ac/institutes/grid.28541.3a", 
          "name": [
            "FZI Forschungszentrum Informatik, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stojanovic", 
        "givenName": "Ljiljana", 
        "id": "sg:person.013755153627.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013755153627.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FZI Forschungszentrum Informatik, Karlsruhe, Germany", 
          "id": "http://www.grid.ac/institutes/grid.28541.3a", 
          "name": [
            "FZI Forschungszentrum Informatik, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anicic", 
        "givenName": "Darko", 
        "id": "sg:person.014435305051.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014435305051.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FZI Forschungszentrum Informatik, Karlsruhe, Germany", 
          "id": "http://www.grid.ac/institutes/grid.28541.3a", 
          "name": [
            "FZI Forschungszentrum Informatik, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Jun", 
        "id": "sg:person.013363352161.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363352161.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FZI Forschungszentrum Informatik, Karlsruhe, Germany", 
          "id": "http://www.grid.ac/institutes/grid.28541.3a", 
          "name": [
            "FZI Forschungszentrum Informatik, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sen", 
        "givenName": "Sinan", 
        "id": "sg:person.016602204374.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602204374.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FZI Forschungszentrum Informatik, Karlsruhe, Germany", 
          "id": "http://www.grid.ac/institutes/grid.28541.3a", 
          "name": [
            "FZI Forschungszentrum Informatik, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "St\u00fchmer", 
        "givenName": "Roland", 
        "id": "sg:person.07555104547.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07555104547.53"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Complex event processing is about processing huge amounts of information in real time, in a rather complex way. The degree of complexity is determined by the level of the interdependencies between information to be processed. There are several more or less traditional operators for defining these interdependencies, which are supported by existing approaches and the main competition is around the speed (throughput) of processing. However, novel application domains like Future Internet are challenging complex event processing for a more comprehensive approach: from how to create complex event patterns over the heterogeneous event sources (including textual data), to how to efficiently detect them in a distributed setting, including the usage of background knowledge. In this chapter we present an approach for intelligent CEP (iCEP) based on the usage of semantic technologies. It represents an end-to-end solution for iCEP starting from the definition of complex event patterns, through intelligent detection, to advanced 3-D visualization of complex events. At the center of the approach is the semantic model of complex events that alleviates the process of creating and maintaining complex event patterns. The approach utilizes logic-based processing for including domain knowledge in the complex event detection process, leading to complex event reasoning. This approach has been implemented in the web-based framework called iCEP Studio.", 
    "editor": [
      {
        "familyName": "Fensel", 
        "givenName": "Dieter", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-19797-0_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-19796-3", 
        "978-3-642-19797-0"
      ], 
      "name": "Foundations for the Web of Information and Services", 
      "type": "Book"
    }, 
    "keywords": [
      "complex event patterns", 
      "Complex Event Processing", 
      "event patterns", 
      "event processing", 
      "event reasoning", 
      "web-based framework", 
      "novel application domains", 
      "complex events", 
      "event detection process", 
      "semantic technologies", 
      "application domains", 
      "future Internet", 
      "intelligent detection", 
      "domain knowledge", 
      "semantic model", 
      "end solution", 
      "event sources", 
      "huge amount", 
      "detection process", 
      "real time", 
      "traditional operators", 
      "background knowledge", 
      "degree of complexity", 
      "reasoning", 
      "processing", 
      "main competition", 
      "usage", 
      "Internet", 
      "information", 
      "interdependencies", 
      "complexity", 
      "visualization", 
      "framework", 
      "technology", 
      "studio", 
      "operators", 
      "knowledge", 
      "speed of processing", 
      "comprehensive approach", 
      "detection", 
      "domain", 
      "speed", 
      "process", 
      "solution", 
      "way", 
      "definition", 
      "model", 
      "complex ways", 
      "CEP", 
      "patterns", 
      "time", 
      "end", 
      "amount", 
      "chapter", 
      "events", 
      "setting", 
      "source", 
      "competition", 
      "center", 
      "degree", 
      "levels", 
      "approach", 
      "heterogeneous event sources", 
      "iCEP", 
      "logic-based processing", 
      "complex event detection process", 
      "complex event reasoning", 
      "iCEP Studio", 
      "Semantic Complex Event Reasoning"
    ], 
    "name": "Semantic Complex Event Reasoning\u2014Beyond Complex Event Processing", 
    "pagination": "253-279", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041184002"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-19797-0_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-19797-0_14", 
      "https://app.dimensions.ai/details/publication/pub.1041184002"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_85.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-19797-0_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-19797-0_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-19797-0_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-19797-0_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-19797-0_14'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      23 PREDICATES      95 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-19797-0_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author Nfb175d524e604599b68a6c28a9bde89e
5 schema:datePublished 2011
6 schema:datePublishedReg 2011-01-01
7 schema:description Complex event processing is about processing huge amounts of information in real time, in a rather complex way. The degree of complexity is determined by the level of the interdependencies between information to be processed. There are several more or less traditional operators for defining these interdependencies, which are supported by existing approaches and the main competition is around the speed (throughput) of processing. However, novel application domains like Future Internet are challenging complex event processing for a more comprehensive approach: from how to create complex event patterns over the heterogeneous event sources (including textual data), to how to efficiently detect them in a distributed setting, including the usage of background knowledge. In this chapter we present an approach for intelligent CEP (iCEP) based on the usage of semantic technologies. It represents an end-to-end solution for iCEP starting from the definition of complex event patterns, through intelligent detection, to advanced 3-D visualization of complex events. At the center of the approach is the semantic model of complex events that alleviates the process of creating and maintaining complex event patterns. The approach utilizes logic-based processing for including domain knowledge in the complex event detection process, leading to complex event reasoning. This approach has been implemented in the web-based framework called iCEP Studio.
8 schema:editor N9fa289f5ef494157a1b9cfcef9843c3e
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nba16ee718ca946c598380e59f06ba4f7
13 schema:keywords CEP
14 Complex Event Processing
15 Internet
16 Semantic Complex Event Reasoning
17 amount
18 application domains
19 approach
20 background knowledge
21 center
22 chapter
23 competition
24 complex event detection process
25 complex event patterns
26 complex event reasoning
27 complex events
28 complex ways
29 complexity
30 comprehensive approach
31 definition
32 degree
33 degree of complexity
34 detection
35 detection process
36 domain
37 domain knowledge
38 end
39 end solution
40 event detection process
41 event patterns
42 event processing
43 event reasoning
44 event sources
45 events
46 framework
47 future Internet
48 heterogeneous event sources
49 huge amount
50 iCEP
51 iCEP Studio
52 information
53 intelligent detection
54 interdependencies
55 knowledge
56 levels
57 logic-based processing
58 main competition
59 model
60 novel application domains
61 operators
62 patterns
63 process
64 processing
65 real time
66 reasoning
67 semantic model
68 semantic technologies
69 setting
70 solution
71 source
72 speed
73 speed of processing
74 studio
75 technology
76 time
77 traditional operators
78 usage
79 visualization
80 way
81 web-based framework
82 schema:name Semantic Complex Event Reasoning—Beyond Complex Event Processing
83 schema:pagination 253-279
84 schema:productId N0914490661ec4239ac5d816c71d7bae4
85 Ndb5957fa67594b089a563daf8effd65d
86 schema:publisher N2a094f09f9ce425395eece17ff8ed444
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041184002
88 https://doi.org/10.1007/978-3-642-19797-0_14
89 schema:sdDatePublished 2022-01-01T19:28
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nc266faacfc1548f8ad0d8705571647d5
92 schema:url https://doi.org/10.1007/978-3-642-19797-0_14
93 sgo:license sg:explorer/license/
94 sgo:sdDataset chapters
95 rdf:type schema:Chapter
96 N08c830ea662f48d4a42a664e7282f7da rdf:first sg:person.014435305051.32
97 rdf:rest N6ba538213c664c44bcc32973a4153b48
98 N0914490661ec4239ac5d816c71d7bae4 schema:name doi
99 schema:value 10.1007/978-3-642-19797-0_14
100 rdf:type schema:PropertyValue
101 N1439106a9fbc4bb69e2f8ce0bc5bc55e rdf:first sg:person.013755153627.81
102 rdf:rest N08c830ea662f48d4a42a664e7282f7da
103 N1b98a929551340dda8656b6d1e34a890 rdf:first sg:person.07555104547.53
104 rdf:rest rdf:nil
105 N2a094f09f9ce425395eece17ff8ed444 schema:name Springer Nature
106 rdf:type schema:Organisation
107 N47e15303a84e4be786ab7be7ef843814 schema:familyName Fensel
108 schema:givenName Dieter
109 rdf:type schema:Person
110 N6ba538213c664c44bcc32973a4153b48 rdf:first sg:person.013363352161.43
111 rdf:rest N8de5676008f244eda9fd188d71b8d5ef
112 N8de5676008f244eda9fd188d71b8d5ef rdf:first sg:person.016602204374.99
113 rdf:rest N1b98a929551340dda8656b6d1e34a890
114 N9fa289f5ef494157a1b9cfcef9843c3e rdf:first N47e15303a84e4be786ab7be7ef843814
115 rdf:rest rdf:nil
116 Nba16ee718ca946c598380e59f06ba4f7 schema:isbn 978-3-642-19796-3
117 978-3-642-19797-0
118 schema:name Foundations for the Web of Information and Services
119 rdf:type schema:Book
120 Nc266faacfc1548f8ad0d8705571647d5 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 Ndb5957fa67594b089a563daf8effd65d schema:name dimensions_id
123 schema:value pub.1041184002
124 rdf:type schema:PropertyValue
125 Nfb175d524e604599b68a6c28a9bde89e rdf:first sg:person.011564632227.91
126 rdf:rest N1439106a9fbc4bb69e2f8ce0bc5bc55e
127 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
128 schema:name Information and Computing Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
131 schema:name Artificial Intelligence and Image Processing
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
134 schema:name Information Systems
135 rdf:type schema:DefinedTerm
136 sg:person.011564632227.91 schema:affiliation grid-institutes:grid.28541.3a
137 schema:familyName Stojanovic
138 schema:givenName Nenad
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011564632227.91
140 rdf:type schema:Person
141 sg:person.013363352161.43 schema:affiliation grid-institutes:grid.28541.3a
142 schema:familyName Ma
143 schema:givenName Jun
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363352161.43
145 rdf:type schema:Person
146 sg:person.013755153627.81 schema:affiliation grid-institutes:grid.28541.3a
147 schema:familyName Stojanovic
148 schema:givenName Ljiljana
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013755153627.81
150 rdf:type schema:Person
151 sg:person.014435305051.32 schema:affiliation grid-institutes:grid.28541.3a
152 schema:familyName Anicic
153 schema:givenName Darko
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014435305051.32
155 rdf:type schema:Person
156 sg:person.016602204374.99 schema:affiliation grid-institutes:grid.28541.3a
157 schema:familyName Sen
158 schema:givenName Sinan
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602204374.99
160 rdf:type schema:Person
161 sg:person.07555104547.53 schema:affiliation grid-institutes:grid.28541.3a
162 schema:familyName Stühmer
163 schema:givenName Roland
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07555104547.53
165 rdf:type schema:Person
166 grid-institutes:grid.28541.3a schema:alternateName FZI Forschungszentrum Informatik, Karlsruhe, Germany
167 schema:name FZI Forschungszentrum Informatik, Karlsruhe, Germany
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...