Interior Point Algorithms and Applications View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Longquan Yong

ABSTRACT

Modern interior point methods originated from an algorithm introduced by Karmarkar in 1984 for linear programming. In the years since then, algorithms and software for linear programming have become quite popular, while extensions to more general classes of problems, such as convex quadratic programming, linear complementarity problem, semi-definite programming, second order cone programming and nonconvex and nonlinear problems, have reached varying levels of maturity. In this paper we review the interior point algorithms and applications in some optimization problems, such as linear programming, linear complementarity problem, semi-definite programming and some convex programming. Combining with the current studies, we conclude that " applications of interior point algorithms and kernel function-based interior point algorithms" will be the research focuses in the future. More... »

PAGES

165-172

Book

TITLE

Future Intelligent Information Systems

ISBN

978-3-642-19705-5
978-3-642-19706-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-19706-2_22

DOI

http://dx.doi.org/10.1007/978-3-642-19706-2_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049649809


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shaanxi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412500.2", 
          "name": [
            "Department of Mathematics, Shaanxi University of Technology, 723001, Hanzhong, Shaanxi, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yong", 
        "givenName": "Longquan", 
        "id": "sg:person.014120365675.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120365675.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01587074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000287629", 
          "https://doi.org/10.1007/bf01587074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(98)10032-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018731805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9617-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020475399", 
          "https://doi.org/10.1007/978-1-4613-9617-8_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01587075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021241981", 
          "https://doi.org/10.1007/bf01587075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023619705", 
          "https://doi.org/10.1007/bf01580085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023619705", 
          "https://doi.org/10.1007/bf01580085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9617-8_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024431783", 
          "https://doi.org/10.1007/978-1-4613-9617-8_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028120387", 
          "https://doi.org/10.1007/bf01580724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028120387", 
          "https://doi.org/10.1007/bf01580724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00011378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035948345", 
          "https://doi.org/10.1007/pl00011378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02579150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035950209", 
          "https://doi.org/10.1007/bf02579150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02579150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035950209", 
          "https://doi.org/10.1007/bf02579150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-3449-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039611290", 
          "https://doi.org/10.1007/978-1-4613-3449-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-3449-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039611290", 
          "https://doi.org/10.1007/978-1-4613-3449-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021700210959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045583985", 
          "https://doi.org/10.1023/a:1021700210959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(00)00432-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048215655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556789908805750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052632955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/59.486104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061193727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0802028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062854179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0804012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062854244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1038003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062863973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623495290209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.22.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064724071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611971453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118032701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106875241"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Modern interior point methods originated from an algorithm introduced by Karmarkar in 1984 for linear programming. In the years since then, algorithms and software for linear programming have become quite popular, while extensions to more general classes of problems, such as convex quadratic programming, linear complementarity problem, semi-definite programming, second order cone programming and nonconvex and nonlinear problems, have reached varying levels of maturity. In this paper we review the interior point algorithms and applications in some optimization problems, such as linear programming, linear complementarity problem, semi-definite programming and some convex programming. Combining with the current studies, we conclude that \" applications of interior point algorithms and kernel function-based interior point algorithms\" will be the research focuses in the future.", 
    "editor": [
      {
        "familyName": "Zeng", 
        "givenName": "Dehuai", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-19706-2_22", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-19705-5", 
        "978-3-642-19706-2"
      ], 
      "name": "Future Intelligent Information Systems", 
      "type": "Book"
    }, 
    "name": "Interior Point Algorithms and Applications", 
    "pagination": "165-172", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049649809"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-19706-2_22"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ec845010b785cf9015ff0852785ef44a5e75056faef7e8b5e821259f91a54b9f"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-19706-2_22", 
      "https://app.dimensions.ai/details/publication/pub.1049649809"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71674_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-19706-2_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-19706-2_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-19706-2_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-19706-2_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-19706-2_22'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      23 PREDICATES      49 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-19706-2_22 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N85679cce9f324a4f97f9a18dd9e031e0
4 schema:citation sg:pub.10.1007/978-1-4613-3449-1
5 sg:pub.10.1007/978-1-4613-9617-8_2
6 sg:pub.10.1007/978-1-4613-9617-8_8
7 sg:pub.10.1007/bf01580085
8 sg:pub.10.1007/bf01580724
9 sg:pub.10.1007/bf01587074
10 sg:pub.10.1007/bf01587075
11 sg:pub.10.1007/bf02579150
12 sg:pub.10.1007/pl00011378
13 sg:pub.10.1023/a:1021700210959
14 https://doi.org/10.1002/9781118032701
15 https://doi.org/10.1016/s0024-3795(98)10032-0
16 https://doi.org/10.1016/s0377-0427(00)00432-5
17 https://doi.org/10.1080/10556789908805750
18 https://doi.org/10.1109/59.486104
19 https://doi.org/10.1137/0802028
20 https://doi.org/10.1137/0804012
21 https://doi.org/10.1137/1.9781611970791
22 https://doi.org/10.1137/1.9781611971453
23 https://doi.org/10.1137/1038003
24 https://doi.org/10.1137/s1052623495290209
25 https://doi.org/10.1287/moor.22.1.1
26 schema:datePublished 2011
27 schema:datePublishedReg 2011-01-01
28 schema:description Modern interior point methods originated from an algorithm introduced by Karmarkar in 1984 for linear programming. In the years since then, algorithms and software for linear programming have become quite popular, while extensions to more general classes of problems, such as convex quadratic programming, linear complementarity problem, semi-definite programming, second order cone programming and nonconvex and nonlinear problems, have reached varying levels of maturity. In this paper we review the interior point algorithms and applications in some optimization problems, such as linear programming, linear complementarity problem, semi-definite programming and some convex programming. Combining with the current studies, we conclude that " applications of interior point algorithms and kernel function-based interior point algorithms" will be the research focuses in the future.
29 schema:editor N7be5a7ed75ed443daac52c9b0694472b
30 schema:genre chapter
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf Nc906bac0050f4d798006a9aeaeca4732
34 schema:name Interior Point Algorithms and Applications
35 schema:pagination 165-172
36 schema:productId N6b13f9a2fd144f3797100f3653ac5f61
37 N840757a99e894f55b7a790c46bd59355
38 Nfcd8bf5033e14ea6aeec254af1371a50
39 schema:publisher N021c2e871abe453c8b5335711144bc16
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049649809
41 https://doi.org/10.1007/978-3-642-19706-2_22
42 schema:sdDatePublished 2019-04-16T08:35
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N2c44fb65350f44feaef6a8aedb8b29a0
45 schema:url https://link.springer.com/10.1007%2F978-3-642-19706-2_22
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N021c2e871abe453c8b5335711144bc16 schema:location Berlin, Heidelberg
50 schema:name Springer Berlin Heidelberg
51 rdf:type schema:Organisation
52 N2c44fb65350f44feaef6a8aedb8b29a0 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N6b13f9a2fd144f3797100f3653ac5f61 schema:name doi
55 schema:value 10.1007/978-3-642-19706-2_22
56 rdf:type schema:PropertyValue
57 N7be5a7ed75ed443daac52c9b0694472b rdf:first Nfddaf26cd9df4213a3ef2979e26c03cd
58 rdf:rest rdf:nil
59 N840757a99e894f55b7a790c46bd59355 schema:name dimensions_id
60 schema:value pub.1049649809
61 rdf:type schema:PropertyValue
62 N85679cce9f324a4f97f9a18dd9e031e0 rdf:first sg:person.014120365675.69
63 rdf:rest rdf:nil
64 Nc906bac0050f4d798006a9aeaeca4732 schema:isbn 978-3-642-19705-5
65 978-3-642-19706-2
66 schema:name Future Intelligent Information Systems
67 rdf:type schema:Book
68 Nfcd8bf5033e14ea6aeec254af1371a50 schema:name readcube_id
69 schema:value ec845010b785cf9015ff0852785ef44a5e75056faef7e8b5e821259f91a54b9f
70 rdf:type schema:PropertyValue
71 Nfddaf26cd9df4213a3ef2979e26c03cd schema:familyName Zeng
72 schema:givenName Dehuai
73 rdf:type schema:Person
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
78 schema:name Computation Theory and Mathematics
79 rdf:type schema:DefinedTerm
80 sg:person.014120365675.69 schema:affiliation https://www.grid.ac/institutes/grid.412500.2
81 schema:familyName Yong
82 schema:givenName Longquan
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120365675.69
84 rdf:type schema:Person
85 sg:pub.10.1007/978-1-4613-3449-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039611290
86 https://doi.org/10.1007/978-1-4613-3449-1
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-1-4613-9617-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024431783
89 https://doi.org/10.1007/978-1-4613-9617-8_2
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-1-4613-9617-8_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020475399
92 https://doi.org/10.1007/978-1-4613-9617-8_8
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf01580085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023619705
95 https://doi.org/10.1007/bf01580085
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01580724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028120387
98 https://doi.org/10.1007/bf01580724
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01587074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000287629
101 https://doi.org/10.1007/bf01587074
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01587075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021241981
104 https://doi.org/10.1007/bf01587075
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02579150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035950209
107 https://doi.org/10.1007/bf02579150
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/pl00011378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035948345
110 https://doi.org/10.1007/pl00011378
111 rdf:type schema:CreativeWork
112 sg:pub.10.1023/a:1021700210959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045583985
113 https://doi.org/10.1023/a:1021700210959
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/9781118032701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106875241
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0024-3795(98)10032-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018731805
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0377-0427(00)00432-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048215655
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1080/10556789908805750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052632955
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/59.486104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061193727
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1137/0802028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854179
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1137/0804012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854244
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1137/1.9781611970791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556249
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1137/1.9781611971453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555847
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1137/1038003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062863973
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1137/s1052623495290209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883513
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1287/moor.22.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064724071
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.412500.2 schema:alternateName Shaanxi University of Technology
140 schema:name Department of Mathematics, Shaanxi University of Technology, 723001, Hanzhong, Shaanxi, P.R. China
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...