Adaptive Mitosis Detection in Large in vitro Stem Cell Populations using Timelapse Microscopy View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011-03-13

AUTHORS

Tim Becker , Daniel H. Rapoport , Amir Madany Mamlouk

ABSTRACT

Reliable analysis of adult stem cell populations in in vitro experiments still poses a problem on the way to fully understand the regulating mechanism of these cultures. However, it is essential in the use of cultivated endogenous cells in stem cell therapies. One crucial feature during automated analysis is clearly the robust detection of mitotic events. In this work, we use the fully labeled stem cell benchmark data set CeTReS I in order to evaluate different approaches of mitosis detection: a purely time line based approach; a feature-based motility detector; and a detector based on the cell morphology changes, for which we also propose an adaptive version. We demonstrate that the approach based on morphological change outperforms the static detectors. However, the set of optimal features is changing over time, and thus it is not surprising that a feature set adapted to the systems confluency shows the best performance. More... »

PAGES

49-53

References to SciGraph publications

  • 2005. Cell Segmentation, Tracking, and Mitosis Detection Using Temporal Context in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2005
  • Book

    TITLE

    Bildverarbeitung für die Medizin 2011

    ISBN

    978-3-642-19334-7
    978-3-642-19335-4

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-19335-4_12

    DOI

    http://dx.doi.org/10.1007/978-3-642-19335-4_12

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027241858


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of L\u00fcbeck", 
              "id": "https://www.grid.ac/institutes/grid.4562.5", 
              "name": [
                "Fraunhofer Research Institution for Marine Biotechnology, L\u00fcbeck, Germany", 
                "Institute for Neuro- and Bioinformatics, University of L\u00fcbeck, L\u00fcbeck, Germany", 
                "Graduate School for Computing in Medicine and Life Science, University of L\u00fcbeck, L\u00fcbeck, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Becker", 
            "givenName": "Tim", 
            "id": "sg:person.01047674253.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047674253.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer-Einrichtung f\u00fcr Marine Biotechnologie", 
              "id": "https://www.grid.ac/institutes/grid.469834.4", 
              "name": [
                "Fraunhofer Research Institution for Marine Biotechnology, L\u00fcbeck, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rapoport", 
            "givenName": "Daniel H.", 
            "id": "sg:person.01062042545.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062042545.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of L\u00fcbeck", 
              "id": "https://www.grid.ac/institutes/grid.4562.5", 
              "name": [
                "Institute for Neuro- and Bioinformatics, University of L\u00fcbeck, L\u00fcbeck, Germany", 
                "Graduate School for Computing in Medicine and Life Science, University of L\u00fcbeck, L\u00fcbeck, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mamlouk", 
            "givenName": "Amir Madany", 
            "id": "sg:person.014550253755.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014550253755.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.aanat.2006.07.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004730303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2008.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024836436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11566465_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027350914", 
              "https://doi.org/10.1007/11566465_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11566465_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027350914", 
              "https://doi.org/10.1007/11566465_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/conf.neuro.11.2009.08.081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071267462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/eurcon.2005.1630104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095284623"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-03-13", 
        "datePublishedReg": "2011-03-13", 
        "description": "Reliable analysis of adult stem cell populations in in vitro experiments still poses a problem on the way to fully understand the regulating mechanism of these cultures. However, it is essential in the use of cultivated endogenous cells in stem cell therapies. One crucial feature during automated analysis is clearly the robust detection of mitotic events. In this work, we use the fully labeled stem cell benchmark data set CeTReS I in order to evaluate different approaches of mitosis detection: a purely time line based approach; a feature-based motility detector; and a detector based on the cell morphology changes, for which we also propose an adaptive version. We demonstrate that the approach based on morphological change outperforms the static detectors. However, the set of optimal features is changing over time, and thus it is not surprising that a feature set adapted to the systems confluency shows the best performance.", 
        "editor": [
          {
            "familyName": "Handels", 
            "givenName": "Heinz", 
            "type": "Person"
          }, 
          {
            "familyName": "Ehrhardt", 
            "givenName": "Jan", 
            "type": "Person"
          }, 
          {
            "familyName": "Deserno", 
            "givenName": "Thomas M.", 
            "type": "Person"
          }, 
          {
            "familyName": "Meinzer", 
            "givenName": "Hans-Peter", 
            "type": "Person"
          }, 
          {
            "familyName": "Tolxdorff", 
            "givenName": "Thomas", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-19335-4_12", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-642-19334-7", 
            "978-3-642-19335-4"
          ], 
          "name": "Bildverarbeitung f\u00fcr die Medizin 2011", 
          "type": "Book"
        }, 
        "name": "Adaptive Mitosis Detection in Large in vitro Stem Cell Populations using Timelapse Microscopy", 
        "pagination": "49-53", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027241858"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-19335-4_12"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "81c510362c326f2df1e3c03b046f3f8931cba957a2d100972a16af699b8d5fb1"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-19335-4_12", 
          "https://app.dimensions.ai/details/publication/pub.1027241858"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71689_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-19335-4_12"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-19335-4_12'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-19335-4_12'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-19335-4_12'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-19335-4_12'


     

    This table displays all metadata directly associated to this object as RDF triples.

    120 TRIPLES      23 PREDICATES      31 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-19335-4_12 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N7d99e0ee63554adfa3b3ecc01f87af24
    4 schema:citation sg:pub.10.1007/11566465_38
    5 https://doi.org/10.1016/j.aanat.2006.07.012
    6 https://doi.org/10.1016/j.media.2008.06.001
    7 https://doi.org/10.1109/eurcon.2005.1630104
    8 https://doi.org/10.3389/conf.neuro.11.2009.08.081
    9 schema:datePublished 2011-03-13
    10 schema:datePublishedReg 2011-03-13
    11 schema:description Reliable analysis of adult stem cell populations in in vitro experiments still poses a problem on the way to fully understand the regulating mechanism of these cultures. However, it is essential in the use of cultivated endogenous cells in stem cell therapies. One crucial feature during automated analysis is clearly the robust detection of mitotic events. In this work, we use the fully labeled stem cell benchmark data set CeTReS I in order to evaluate different approaches of mitosis detection: a purely time line based approach; a feature-based motility detector; and a detector based on the cell morphology changes, for which we also propose an adaptive version. We demonstrate that the approach based on morphological change outperforms the static detectors. However, the set of optimal features is changing over time, and thus it is not surprising that a feature set adapted to the systems confluency shows the best performance.
    12 schema:editor N2515138925194307957057888d1943c7
    13 schema:genre chapter
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N025064b6b4414050b781f670bbfa9acf
    17 schema:name Adaptive Mitosis Detection in Large in vitro Stem Cell Populations using Timelapse Microscopy
    18 schema:pagination 49-53
    19 schema:productId Nb5eaec231efc4ecdb98ac4df2b7ccfea
    20 Nbd32804c31b243fd890a07a8cc4eef82
    21 Ndc1f8aa8c3b54e779d46f894a9ca6029
    22 schema:publisher N18bdcf7dce454aaea9df153a34577c0b
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027241858
    24 https://doi.org/10.1007/978-3-642-19335-4_12
    25 schema:sdDatePublished 2019-04-16T08:37
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N7eb605535b074fa68e6dd3baffd4b964
    28 schema:url https://link.springer.com/10.1007%2F978-3-642-19335-4_12
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset chapters
    31 rdf:type schema:Chapter
    32 N025064b6b4414050b781f670bbfa9acf schema:isbn 978-3-642-19334-7
    33 978-3-642-19335-4
    34 schema:name Bildverarbeitung für die Medizin 2011
    35 rdf:type schema:Book
    36 N18bdcf7dce454aaea9df153a34577c0b schema:location Berlin, Heidelberg
    37 schema:name Springer Berlin Heidelberg
    38 rdf:type schema:Organisation
    39 N2515138925194307957057888d1943c7 rdf:first N5cca522460ae42c29311ecddfb7e76d5
    40 rdf:rest N9fd0b1928e11434d88433d894a395707
    41 N302825e1d3484b60a5ac389427a48cc0 rdf:first N5ea48515656a419e9bf33252cede4bc9
    42 rdf:rest Nab69e8682a804e778b611a24e0d4882c
    43 N5cca522460ae42c29311ecddfb7e76d5 schema:familyName Handels
    44 schema:givenName Heinz
    45 rdf:type schema:Person
    46 N5ea48515656a419e9bf33252cede4bc9 schema:familyName Meinzer
    47 schema:givenName Hans-Peter
    48 rdf:type schema:Person
    49 N5f5305bf59a34f849aaba0d0637306a2 schema:familyName Deserno
    50 schema:givenName Thomas M.
    51 rdf:type schema:Person
    52 N7666fe1c8c50473bb0b718b6c2a0f2d6 schema:familyName Ehrhardt
    53 schema:givenName Jan
    54 rdf:type schema:Person
    55 N7d99e0ee63554adfa3b3ecc01f87af24 rdf:first sg:person.01047674253.52
    56 rdf:rest Nba5ff0e8f02a4f03aeeb95f84058810c
    57 N7eb605535b074fa68e6dd3baffd4b964 schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N89794d3fce554e51b50facfa1d9c69ef rdf:first sg:person.014550253755.31
    60 rdf:rest rdf:nil
    61 N9fd0b1928e11434d88433d894a395707 rdf:first N7666fe1c8c50473bb0b718b6c2a0f2d6
    62 rdf:rest Naa5713b3dfc846aabae0f8762e134555
    63 Naa5713b3dfc846aabae0f8762e134555 rdf:first N5f5305bf59a34f849aaba0d0637306a2
    64 rdf:rest N302825e1d3484b60a5ac389427a48cc0
    65 Nab69e8682a804e778b611a24e0d4882c rdf:first Nbd3fe4c06d4a4dfeb83597f520869725
    66 rdf:rest rdf:nil
    67 Nb5eaec231efc4ecdb98ac4df2b7ccfea schema:name doi
    68 schema:value 10.1007/978-3-642-19335-4_12
    69 rdf:type schema:PropertyValue
    70 Nba5ff0e8f02a4f03aeeb95f84058810c rdf:first sg:person.01062042545.48
    71 rdf:rest N89794d3fce554e51b50facfa1d9c69ef
    72 Nbd32804c31b243fd890a07a8cc4eef82 schema:name dimensions_id
    73 schema:value pub.1027241858
    74 rdf:type schema:PropertyValue
    75 Nbd3fe4c06d4a4dfeb83597f520869725 schema:familyName Tolxdorff
    76 schema:givenName Thomas
    77 rdf:type schema:Person
    78 Ndc1f8aa8c3b54e779d46f894a9ca6029 schema:name readcube_id
    79 schema:value 81c510362c326f2df1e3c03b046f3f8931cba957a2d100972a16af699b8d5fb1
    80 rdf:type schema:PropertyValue
    81 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Biological Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Biochemistry and Cell Biology
    86 rdf:type schema:DefinedTerm
    87 sg:person.01047674253.52 schema:affiliation https://www.grid.ac/institutes/grid.4562.5
    88 schema:familyName Becker
    89 schema:givenName Tim
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047674253.52
    91 rdf:type schema:Person
    92 sg:person.01062042545.48 schema:affiliation https://www.grid.ac/institutes/grid.469834.4
    93 schema:familyName Rapoport
    94 schema:givenName Daniel H.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062042545.48
    96 rdf:type schema:Person
    97 sg:person.014550253755.31 schema:affiliation https://www.grid.ac/institutes/grid.4562.5
    98 schema:familyName Mamlouk
    99 schema:givenName Amir Madany
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014550253755.31
    101 rdf:type schema:Person
    102 sg:pub.10.1007/11566465_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027350914
    103 https://doi.org/10.1007/11566465_38
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.aanat.2006.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004730303
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/j.media.2008.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024836436
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1109/eurcon.2005.1630104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095284623
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.3389/conf.neuro.11.2009.08.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071267462
    112 rdf:type schema:CreativeWork
    113 https://www.grid.ac/institutes/grid.4562.5 schema:alternateName University of Lübeck
    114 schema:name Fraunhofer Research Institution for Marine Biotechnology, Lübeck, Germany
    115 Graduate School for Computing in Medicine and Life Science, University of Lübeck, Lübeck, Germany
    116 Institute for Neuro- and Bioinformatics, University of Lübeck, Lübeck, Germany
    117 rdf:type schema:Organization
    118 https://www.grid.ac/institutes/grid.469834.4 schema:alternateName Fraunhofer-Einrichtung für Marine Biotechnologie
    119 schema:name Fraunhofer Research Institution for Marine Biotechnology, Lübeck, Germany
    120 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...