Introduction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

John H. C. Gash , Pavel Kabat

ABSTRACT

Twenty years ago, the numerical weather prediction models on which today’s Global Circulation Models (GCMs) are based could afford to have relatively inaccurate representations of the surface fluxes of energy and water: the average residence time for water vapour in the atmosphere is about a week, so the accuracy of weather forecasts a day ahead is not highly dependent on a good representation of the evaporation. However, as is evident from Part A, when these models are used for climate prediction, if the transfer of energy and water through the land surface is not correct, then the accuracy of the climate prediction will suffer. Yet the practicalities of global scale modelling mean that within these models the land surface of the Earth is divided into grid Squares several hundred kilometres across. At each grid point the land surface must be represented by a simple, and computationally efficient, set of equations, with only a few Parameters to represent the soil and Vegetation. This need to represent all the biomes of the Earth, but at a coarse scale, created a demand for both new land-surface models and new data to inform those models. More... »

PAGES

157-158

Book

TITLE

Vegetation, Water, Humans and the Climate

ISBN

978-3-642-62373-8
978-3-642-18948-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-18948-7_12

DOI

http://dx.doi.org/10.1007/978-3-642-18948-7_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038328650


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Ecology and Hydrology", 
          "id": "https://www.grid.ac/institutes/grid.494924.6", 
          "name": [
            "Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gash", 
        "givenName": "John H. C.", 
        "id": "sg:person.012677611154.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012677611154.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Wageningen University and Research Centre, Droevendaalsesteeg 3,  6708 PB\u00a0Wageningen, 6708, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kabat", 
        "givenName": "Pavel", 
        "id": "sg:person.01051063477.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051063477.69"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Twenty years ago, the numerical weather prediction models on which today\u2019s Global Circulation Models (GCMs) are based could afford to have relatively inaccurate representations of the surface fluxes of energy and water: the average residence time for water vapour in the atmosphere is about a week, so the accuracy of weather forecasts a day ahead is not highly dependent on a good representation of the evaporation. However, as is evident from Part A, when these models are used for climate prediction, if the transfer of energy and water through the land surface is not correct, then the accuracy of the climate prediction will suffer. Yet the practicalities of global scale modelling mean that within these models the land surface of the Earth is divided into grid Squares several hundred kilometres across. At each grid point the land surface must be represented by a simple, and computationally efficient, set of equations, with only a few Parameters to represent the soil and Vegetation. This need to represent all the biomes of the Earth, but at a coarse scale, created a demand for both new land-surface models and new data to inform those models.", 
    "editor": [
      {
        "familyName": "Kabat", 
        "givenName": "Pavel", 
        "type": "Person"
      }, 
      {
        "familyName": "Claussen", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Dirmeyer", 
        "givenName": "Paul A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gash", 
        "givenName": "John H. C.", 
        "type": "Person"
      }, 
      {
        "familyName": "de Guenni", 
        "givenName": "Lelys Bravo", 
        "type": "Person"
      }, 
      {
        "familyName": "Meybeck", 
        "givenName": "Michel", 
        "type": "Person"
      }, 
      {
        "familyName": "Pielke", 
        "givenName": "Roger A.", 
        "type": "Person"
      }, 
      {
        "familyName": "V\u00f6r\u00f6smarty", 
        "givenName": "Charles I.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hutjes", 
        "givenName": "Ronald W. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "L\u00fctkemeier", 
        "givenName": "Sabine", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-18948-7_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-62373-8", 
        "978-3-642-18948-7"
      ], 
      "name": "Vegetation, Water, Humans and the Climate", 
      "type": "Book"
    }, 
    "name": "Introduction", 
    "pagination": "157-158", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-18948-7_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b6956ab85cf848d47cdb0980fb3ad3ac59b0dd9257199bed9c31c8c4c150dd18"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038328650"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-18948-7_12", 
      "https://app.dimensions.ai/details/publication/pub.1038328650"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000066.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-18948-7_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18948-7_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18948-7_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18948-7_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18948-7_12'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-18948-7_12 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nfa98344125e74194bc6f1ce45a4abb0b
4 schema:datePublished 2004
5 schema:datePublishedReg 2004-01-01
6 schema:description Twenty years ago, the numerical weather prediction models on which today’s Global Circulation Models (GCMs) are based could afford to have relatively inaccurate representations of the surface fluxes of energy and water: the average residence time for water vapour in the atmosphere is about a week, so the accuracy of weather forecasts a day ahead is not highly dependent on a good representation of the evaporation. However, as is evident from Part A, when these models are used for climate prediction, if the transfer of energy and water through the land surface is not correct, then the accuracy of the climate prediction will suffer. Yet the practicalities of global scale modelling mean that within these models the land surface of the Earth is divided into grid Squares several hundred kilometres across. At each grid point the land surface must be represented by a simple, and computationally efficient, set of equations, with only a few Parameters to represent the soil and Vegetation. This need to represent all the biomes of the Earth, but at a coarse scale, created a demand for both new land-surface models and new data to inform those models.
7 schema:editor N47f7f77d84d44f54b7e225465df3891c
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N64b891217ca4420b8895cc6a9eb531a5
12 schema:name Introduction
13 schema:pagination 157-158
14 schema:productId N51b3e23edc39487d8f14fc1272b6f75b
15 N6e5fedf1e20941d0b059b9524d7d09bd
16 Nb55516b58365413a895b9cb30c4bddb5
17 schema:publisher N31bb7260c6d348658d45351d09d93601
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038328650
19 https://doi.org/10.1007/978-3-642-18948-7_12
20 schema:sdDatePublished 2019-04-15T20:50
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N801df2ec2e684679b1ae484e4edd135d
23 schema:url http://link.springer.com/10.1007/978-3-642-18948-7_12
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N071f53e533ff4716956148c6ccd12af3 rdf:first Nf7776346902f4341a1a61d70fa7de225
28 rdf:rest N4efe045685984630995704c77a20b3b8
29 N08f01722e69f4e0980d348dfe26aab5f rdf:first N88d668d948bd4d6b8fd95cee9e682527
30 rdf:rest N11122d846ff448908696b08c7ee27227
31 N0fa0ca09ca194e09a4501317b2fe10d3 rdf:first N5e8077707e5847c1b595592372dc88c9
32 rdf:rest N4fb4ac4595754a07af5f44d691ea7412
33 N11122d846ff448908696b08c7ee27227 rdf:first N11fadd23b40b44eab40a21558c8dc094
34 rdf:rest rdf:nil
35 N11fadd23b40b44eab40a21558c8dc094 schema:familyName Lütkemeier
36 schema:givenName Sabine
37 rdf:type schema:Person
38 N20fa7e9182a54025bb5648f2c1bde7c1 rdf:first sg:person.01051063477.69
39 rdf:rest rdf:nil
40 N2ec844222b9847d7992731fcabbd5431 rdf:first N6570e150b0c74e7b878815bdc78b1b86
41 rdf:rest Nec148712f89e478ea73563b002a8f3ff
42 N31bb7260c6d348658d45351d09d93601 schema:location Berlin, Heidelberg
43 schema:name Springer Berlin Heidelberg
44 rdf:type schema:Organisation
45 N47f6d09afd8348149d67b0341ac4804d schema:familyName Vörösmarty
46 schema:givenName Charles I.
47 rdf:type schema:Person
48 N47f7f77d84d44f54b7e225465df3891c rdf:first N834319f396cc4b96af8731c31e557e7a
49 rdf:rest N071f53e533ff4716956148c6ccd12af3
50 N4efe045685984630995704c77a20b3b8 rdf:first Nb496524c608d42b4ad8ff54ef4449a2e
51 rdf:rest Naa35dfa4df144ee2bf85d8448e7440a3
52 N4fb4ac4595754a07af5f44d691ea7412 rdf:first Nad787a5161f54cc7bfff2e51dbf6ecb9
53 rdf:rest N2ec844222b9847d7992731fcabbd5431
54 N51b3e23edc39487d8f14fc1272b6f75b schema:name readcube_id
55 schema:value b6956ab85cf848d47cdb0980fb3ad3ac59b0dd9257199bed9c31c8c4c150dd18
56 rdf:type schema:PropertyValue
57 N5e8077707e5847c1b595592372dc88c9 schema:familyName de Guenni
58 schema:givenName Lelys Bravo
59 rdf:type schema:Person
60 N64b891217ca4420b8895cc6a9eb531a5 schema:isbn 978-3-642-18948-7
61 978-3-642-62373-8
62 schema:name Vegetation, Water, Humans and the Climate
63 rdf:type schema:Book
64 N6570e150b0c74e7b878815bdc78b1b86 schema:familyName Pielke
65 schema:givenName Roger A.
66 rdf:type schema:Person
67 N6e5fedf1e20941d0b059b9524d7d09bd schema:name doi
68 schema:value 10.1007/978-3-642-18948-7_12
69 rdf:type schema:PropertyValue
70 N6ee747707fd84e81a1b38f9621e917d5 schema:familyName Gash
71 schema:givenName John H. C.
72 rdf:type schema:Person
73 N801df2ec2e684679b1ae484e4edd135d schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N834319f396cc4b96af8731c31e557e7a schema:familyName Kabat
76 schema:givenName Pavel
77 rdf:type schema:Person
78 N88d668d948bd4d6b8fd95cee9e682527 schema:familyName Hutjes
79 schema:givenName Ronald W. A.
80 rdf:type schema:Person
81 Naa35dfa4df144ee2bf85d8448e7440a3 rdf:first N6ee747707fd84e81a1b38f9621e917d5
82 rdf:rest N0fa0ca09ca194e09a4501317b2fe10d3
83 Nad787a5161f54cc7bfff2e51dbf6ecb9 schema:familyName Meybeck
84 schema:givenName Michel
85 rdf:type schema:Person
86 Nb496524c608d42b4ad8ff54ef4449a2e schema:familyName Dirmeyer
87 schema:givenName Paul A.
88 rdf:type schema:Person
89 Nb55516b58365413a895b9cb30c4bddb5 schema:name dimensions_id
90 schema:value pub.1038328650
91 rdf:type schema:PropertyValue
92 Nec148712f89e478ea73563b002a8f3ff rdf:first N47f6d09afd8348149d67b0341ac4804d
93 rdf:rest N08f01722e69f4e0980d348dfe26aab5f
94 Nf7776346902f4341a1a61d70fa7de225 schema:familyName Claussen
95 schema:givenName Martin
96 rdf:type schema:Person
97 Nfa98344125e74194bc6f1ce45a4abb0b rdf:first sg:person.012677611154.13
98 rdf:rest N20fa7e9182a54025bb5648f2c1bde7c1
99 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
100 schema:name Earth Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
103 schema:name Atmospheric Sciences
104 rdf:type schema:DefinedTerm
105 sg:person.01051063477.69 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
106 schema:familyName Kabat
107 schema:givenName Pavel
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051063477.69
109 rdf:type schema:Person
110 sg:person.012677611154.13 schema:affiliation https://www.grid.ac/institutes/grid.494924.6
111 schema:familyName Gash
112 schema:givenName John H. C.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012677611154.13
114 rdf:type schema:Person
115 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
116 schema:name Wageningen University and Research Centre, Droevendaalsesteeg 3, 6708 PB Wageningen, 6708, The Netherlands
117 rdf:type schema:Organization
118 https://www.grid.ac/institutes/grid.494924.6 schema:alternateName Centre for Ecology and Hydrology
119 schema:name Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...