Organic Superconductors View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Michael Lang , Jens Müller

ABSTRACT

Over the past twenty years the research on organic conductors has developed into a most active branch of modern condensed-matter physics. The main difference of molecular conductors compared to conventional metals is that the former are made up of building blocks constructed from carbon atoms and their combinations with other elements such as sulfur, selenium or oxygen. As a result, when forming a crystal, these molecular units preserve to a large extent their specific features such as the molecular orbitals, the ionization energy and the intramolecular vibrational modes. Molecular materials thus have the potential of providing a flexible building-block system where the physical properties can be tuned by small modifications in the arrangements and bridging of these functional units. In contrast to the molecular crystals formed by weakly van der Waals-bond neutral entities, organic conductors consist of open-shell molecular units which are the result of a partial oxidation and reduction of the donor and acceptor molecules in the crystal-growth process. It is the unpaired electron residing in the π-molecular orbital (π-hole) of the donor unit which is responsible for the electronic properties of these charge-transfer salts. Due to a π-orbital overlap between adjacent molecules, the π-holes can delocalize throughout the crystal giving rise to metallic conductivity. More... »

PAGES

453-554

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-18914-2_7

DOI

http://dx.doi.org/10.1007/978-3-642-18914-2_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039245582


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physik-Institut der J.W. Goethe Univ. Frankfurt, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7839.5", 
          "name": [
            "Physik-Institut der J.W. Goethe Univ. Frankfurt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lang", 
        "givenName": "Michael", 
        "id": "sg:person.01111674621.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111674621.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Chemische Physik fester Stoffe, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Chemische Physik fester Stoffe, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "Jens", 
        "id": "sg:person.01107702503.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107702503.33"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Over the past twenty years the research on organic conductors has developed into a most active branch of modern condensed-matter physics. The main difference of molecular conductors compared to conventional metals is that the former are made up of building blocks constructed from carbon atoms and their combinations with other elements such as sulfur, selenium or oxygen. As a result, when forming a crystal, these molecular units preserve to a large extent their specific features such as the molecular orbitals, the ionization energy and the intramolecular vibrational modes. Molecular materials thus have the potential of providing a flexible building-block system where the physical properties can be tuned by small modifications in the arrangements and bridging of these functional units. In contrast to the molecular crystals formed by weakly van der Waals-bond neutral entities, organic conductors consist of open-shell molecular units which are the result of a partial oxidation and reduction of the donor and acceptor molecules in the crystal-growth process. It is the unpaired electron residing in the \u03c0-molecular orbital (\u03c0-hole) of the donor unit which is responsible for the electronic properties of these charge-transfer salts. Due to a \u03c0-orbital overlap between adjacent molecules, the \u03c0-holes can delocalize throughout the crystal giving rise to metallic conductivity.", 
    "editor": [
      {
        "familyName": "Bennemann", 
        "givenName": "K. H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Ketterson", 
        "givenName": "J. B.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-18914-2_7", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-62352-3", 
        "978-3-642-18914-2"
      ], 
      "name": "The Physics of Superconductors", 
      "type": "Book"
    }, 
    "keywords": [
      "molecular units", 
      "organic conductors", 
      "charge-transfer salts", 
      "intramolecular vibrational modes", 
      "molecular materials", 
      "acceptor molecules", 
      "adjacent molecules", 
      "donor units", 
      "molecular orbitals", 
      "molecular conductors", 
      "unpaired electron", 
      "partial oxidation", 
      "orbital overlap", 
      "molecular crystals", 
      "\u03c0-hole", 
      "electronic properties", 
      "crystal growth process", 
      "carbon atoms", 
      "neutral entities", 
      "modern condensed-matter physics", 
      "vibrational modes", 
      "building blocks", 
      "metallic conductivity", 
      "ionization energy", 
      "building block system", 
      "molecules", 
      "physical properties", 
      "crystals", 
      "organic superconductors", 
      "active branch", 
      "oxidation", 
      "orbitals", 
      "properties", 
      "conductors", 
      "condensed-matter physics", 
      "salt", 
      "sulfur", 
      "atoms", 
      "conventional metals", 
      "metals", 
      "oxygen", 
      "small modifications", 
      "conductivity", 
      "selenium", 
      "electrons", 
      "bridging", 
      "units", 
      "materials", 
      "donors", 
      "modification", 
      "energy", 
      "functional units", 
      "large extent", 
      "potential", 
      "arrangement", 
      "specific features", 
      "block", 
      "main difference", 
      "mode", 
      "reduction", 
      "process", 
      "combination", 
      "results", 
      "contrast", 
      "system", 
      "rise", 
      "physics", 
      "elements", 
      "overlap", 
      "extent", 
      "features", 
      "superconductors", 
      "entities", 
      "branches", 
      "differences", 
      "research", 
      "years"
    ], 
    "name": "Organic Superconductors", 
    "pagination": "453-554", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039245582"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-18914-2_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-18914-2_7", 
      "https://app.dimensions.ai/details/publication/pub.1039245582"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_247.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-18914-2_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18914-2_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18914-2_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18914-2_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18914-2_7'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      22 PREDICATES      104 URIs      95 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-18914-2_7 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0303
4 anzsrc-for:0306
5 schema:author N87e09f6944174cfd8040e1273882c49b
6 schema:datePublished 2004
7 schema:datePublishedReg 2004-01-01
8 schema:description Over the past twenty years the research on organic conductors has developed into a most active branch of modern condensed-matter physics. The main difference of molecular conductors compared to conventional metals is that the former are made up of building blocks constructed from carbon atoms and their combinations with other elements such as sulfur, selenium or oxygen. As a result, when forming a crystal, these molecular units preserve to a large extent their specific features such as the molecular orbitals, the ionization energy and the intramolecular vibrational modes. Molecular materials thus have the potential of providing a flexible building-block system where the physical properties can be tuned by small modifications in the arrangements and bridging of these functional units. In contrast to the molecular crystals formed by weakly van der Waals-bond neutral entities, organic conductors consist of open-shell molecular units which are the result of a partial oxidation and reduction of the donor and acceptor molecules in the crystal-growth process. It is the unpaired electron residing in the π-molecular orbital (π-hole) of the donor unit which is responsible for the electronic properties of these charge-transfer salts. Due to a π-orbital overlap between adjacent molecules, the π-holes can delocalize throughout the crystal giving rise to metallic conductivity.
9 schema:editor Ndd55cc3b721a4f108411b7934fb4e8b5
10 schema:genre chapter
11 schema:isAccessibleForFree false
12 schema:isPartOf N9c406c9919a1426fa93da18b1840f5b3
13 schema:keywords acceptor molecules
14 active branch
15 adjacent molecules
16 arrangement
17 atoms
18 block
19 branches
20 bridging
21 building block system
22 building blocks
23 carbon atoms
24 charge-transfer salts
25 combination
26 condensed-matter physics
27 conductivity
28 conductors
29 contrast
30 conventional metals
31 crystal growth process
32 crystals
33 differences
34 donor units
35 donors
36 electronic properties
37 electrons
38 elements
39 energy
40 entities
41 extent
42 features
43 functional units
44 intramolecular vibrational modes
45 ionization energy
46 large extent
47 main difference
48 materials
49 metallic conductivity
50 metals
51 mode
52 modern condensed-matter physics
53 modification
54 molecular conductors
55 molecular crystals
56 molecular materials
57 molecular orbitals
58 molecular units
59 molecules
60 neutral entities
61 orbital overlap
62 orbitals
63 organic conductors
64 organic superconductors
65 overlap
66 oxidation
67 oxygen
68 partial oxidation
69 physical properties
70 physics
71 potential
72 process
73 properties
74 reduction
75 research
76 results
77 rise
78 salt
79 selenium
80 small modifications
81 specific features
82 sulfur
83 superconductors
84 system
85 units
86 unpaired electron
87 vibrational modes
88 years
89 π-hole
90 schema:name Organic Superconductors
91 schema:pagination 453-554
92 schema:productId Ne7776a13528f43db8d14d4b8dd6923f2
93 Nf5bd8987cc2541d29b8b4e677fe50512
94 schema:publisher N5470bfb976634c72a7fc69875bd16388
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039245582
96 https://doi.org/10.1007/978-3-642-18914-2_7
97 schema:sdDatePublished 2022-09-02T16:12
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N6621971f928e4cfb9948aef7ff68e427
100 schema:url https://doi.org/10.1007/978-3-642-18914-2_7
101 sgo:license sg:explorer/license/
102 sgo:sdDataset chapters
103 rdf:type schema:Chapter
104 N5470bfb976634c72a7fc69875bd16388 schema:name Springer Nature
105 rdf:type schema:Organisation
106 N5b566c5266244a8c9cec8dad75f2aca5 rdf:first N8957505218f44e7b8151c6a2b54eb9b4
107 rdf:rest rdf:nil
108 N6621971f928e4cfb9948aef7ff68e427 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N87e09f6944174cfd8040e1273882c49b rdf:first sg:person.01111674621.57
111 rdf:rest Na37b723fb9f84d1e88aee4355cceb2a3
112 N8957505218f44e7b8151c6a2b54eb9b4 schema:familyName Ketterson
113 schema:givenName J. B.
114 rdf:type schema:Person
115 N9c406c9919a1426fa93da18b1840f5b3 schema:isbn 978-3-642-18914-2
116 978-3-642-62352-3
117 schema:name The Physics of Superconductors
118 rdf:type schema:Book
119 Na37b723fb9f84d1e88aee4355cceb2a3 rdf:first sg:person.01107702503.33
120 rdf:rest rdf:nil
121 Nbbbbbd4b78b748c399a689c5e1007b44 schema:familyName Bennemann
122 schema:givenName K. H.
123 rdf:type schema:Person
124 Ndd55cc3b721a4f108411b7934fb4e8b5 rdf:first Nbbbbbd4b78b748c399a689c5e1007b44
125 rdf:rest N5b566c5266244a8c9cec8dad75f2aca5
126 Ne7776a13528f43db8d14d4b8dd6923f2 schema:name doi
127 schema:value 10.1007/978-3-642-18914-2_7
128 rdf:type schema:PropertyValue
129 Nf5bd8987cc2541d29b8b4e677fe50512 schema:name dimensions_id
130 schema:value pub.1039245582
131 rdf:type schema:PropertyValue
132 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
133 schema:name Chemical Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
136 schema:name Inorganic Chemistry
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
139 schema:name Macromolecular and Materials Chemistry
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
142 schema:name Physical Chemistry (incl. Structural)
143 rdf:type schema:DefinedTerm
144 sg:person.01107702503.33 schema:affiliation grid-institutes:grid.419507.e
145 schema:familyName Müller
146 schema:givenName Jens
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107702503.33
148 rdf:type schema:Person
149 sg:person.01111674621.57 schema:affiliation grid-institutes:grid.7839.5
150 schema:familyName Lang
151 schema:givenName Michael
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111674621.57
153 rdf:type schema:Person
154 grid-institutes:grid.419507.e schema:alternateName Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany
155 schema:name Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany
156 rdf:type schema:Organization
157 grid-institutes:grid.7839.5 schema:alternateName Physik-Institut der J.W. Goethe Univ. Frankfurt, Germany
158 schema:name Physik-Institut der J.W. Goethe Univ. Frankfurt, Germany
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...