The Ionization State of Protoplanetary Disks: The Chemical View View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

Th. Henning , D. Semenov , D. Wiebe

ABSTRACT

We describe how a reduction technique can be applied to a chemical model of a typical protoplanetary disk in order to determine the primary chemical processes, relevant to the evolution of the disk ionization degree. It is shown that the number of involved species and reactions significantly varies throughout the disk, serving as a direct indicator for the chemical complexity. Additionally, we discuss where in the disk the chemical equilibrium approach can be used to compute the fractional ionization. More... »

PAGES

555-560

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-18902-9_98

DOI

http://dx.doi.org/10.1007/978-3-642-18902-9_98

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009386379


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institute for Astronomy, K\u00f6nigstuhl 17, D-69117, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.429508.2", 
          "name": [
            "Max-Planck-Institute for Astronomy, K\u00f6nigstuhl 17, D-69117, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henning", 
        "givenName": "Th.", 
        "id": "sg:person.015136145631.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136145631.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institute for Astronomy, K\u00f6nigstuhl 17, D-69117, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.429508.2", 
          "name": [
            "Max-Planck-Institute for Astronomy, K\u00f6nigstuhl 17, D-69117, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semenov", 
        "givenName": "D.", 
        "id": "sg:person.013166203321.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166203321.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Astronomy, Pyatnitskaya 48, 119017, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465335.2", 
          "name": [
            "Institute of Astronomy, Pyatnitskaya 48, 119017, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiebe", 
        "givenName": "D.", 
        "id": "sg:person.015110315535.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110315535.16"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "We describe how a reduction technique can be applied to a chemical model of a typical protoplanetary disk in order to determine the primary chemical processes, relevant to the evolution of the disk ionization degree. It is shown that the number of involved species and reactions significantly varies throughout the disk, serving as a direct indicator for the chemical complexity. Additionally, we discuss where in the disk the chemical equilibrium approach can be used to compute the fractional ionization.", 
    "editor": [
      {
        "familyName": "Pfalzner", 
        "givenName": "Susanne", 
        "type": "Person"
      }, 
      {
        "familyName": "Kramer", 
        "givenName": "Carsten", 
        "type": "Person"
      }, 
      {
        "familyName": "Straubmeier", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Heithausen", 
        "givenName": "Andreas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-18902-9_98", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-62348-6", 
        "978-3-642-18902-9"
      ], 
      "name": "The Dense Interstellar Medium in Galaxies", 
      "type": "Book"
    }, 
    "keywords": [
      "primary chemical processes", 
      "chemical equilibrium approach", 
      "chemical view", 
      "chemical complexity", 
      "chemical model", 
      "chemical processes", 
      "ionization state", 
      "ionization degree", 
      "fractional ionization", 
      "reaction", 
      "ionization", 
      "typical protoplanetary disk", 
      "equilibrium approach", 
      "protoplanetary disks", 
      "species", 
      "process", 
      "technique", 
      "state", 
      "direct indicator", 
      "order", 
      "disk", 
      "degree", 
      "evolution", 
      "reduction techniques", 
      "approach", 
      "number", 
      "view", 
      "model", 
      "complexity", 
      "indicators", 
      "disk ionization degree"
    ], 
    "name": "The Ionization State of Protoplanetary Disks: The Chemical View", 
    "pagination": "555-560", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009386379"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-18902-9_98"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-18902-9_98", 
      "https://app.dimensions.ai/details/publication/pub.1009386379"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_180.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-18902-9_98"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18902-9_98'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18902-9_98'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18902-9_98'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18902-9_98'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      23 PREDICATES      57 URIs      50 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-18902-9_98 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nef57e0b2e3214d9684d72e477cae1e2c
4 schema:datePublished 1997
5 schema:datePublishedReg 1997-01-01
6 schema:description We describe how a reduction technique can be applied to a chemical model of a typical protoplanetary disk in order to determine the primary chemical processes, relevant to the evolution of the disk ionization degree. It is shown that the number of involved species and reactions significantly varies throughout the disk, serving as a direct indicator for the chemical complexity. Additionally, we discuss where in the disk the chemical equilibrium approach can be used to compute the fractional ionization.
7 schema:editor Nd84aabf04c61419c8d875a10bbaf31e6
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N88672cc3d67b4c4fab7c0a42b7fceda2
12 schema:keywords approach
13 chemical complexity
14 chemical equilibrium approach
15 chemical model
16 chemical processes
17 chemical view
18 complexity
19 degree
20 direct indicator
21 disk
22 disk ionization degree
23 equilibrium approach
24 evolution
25 fractional ionization
26 indicators
27 ionization
28 ionization degree
29 ionization state
30 model
31 number
32 order
33 primary chemical processes
34 process
35 protoplanetary disks
36 reaction
37 reduction techniques
38 species
39 state
40 technique
41 typical protoplanetary disk
42 view
43 schema:name The Ionization State of Protoplanetary Disks: The Chemical View
44 schema:pagination 555-560
45 schema:productId N9ae4dfade81e4c45a4b77d7495c2e8f1
46 Nd66be4593f5a4fb491c8accd4760317c
47 schema:publisher N85db289c820c44a3be03660b56d690e7
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009386379
49 https://doi.org/10.1007/978-3-642-18902-9_98
50 schema:sdDatePublished 2021-12-01T19:58
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N72f54b2f33074647b4929b1b56a6c828
53 schema:url https://doi.org/10.1007/978-3-642-18902-9_98
54 sgo:license sg:explorer/license/
55 sgo:sdDataset chapters
56 rdf:type schema:Chapter
57 N032a6a420a0f4b928ade5d1a8884c5d2 rdf:first sg:person.015110315535.16
58 rdf:rest rdf:nil
59 N0bd963e5aa8c4925874933523469543a rdf:first sg:person.013166203321.09
60 rdf:rest N032a6a420a0f4b928ade5d1a8884c5d2
61 N576c6f29b51f45ccbc930b3de51a0220 schema:familyName Kramer
62 schema:givenName Carsten
63 rdf:type schema:Person
64 N6e14b96a22474db4abbc2bc3990484ad rdf:first Nd82b0736f71d482b86a6c4f5d28ba401
65 rdf:rest rdf:nil
66 N72f54b2f33074647b4929b1b56a6c828 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N85db289c820c44a3be03660b56d690e7 schema:name Springer Nature
69 rdf:type schema:Organisation
70 N88672cc3d67b4c4fab7c0a42b7fceda2 schema:isbn 978-3-642-18902-9
71 978-3-642-62348-6
72 schema:name The Dense Interstellar Medium in Galaxies
73 rdf:type schema:Book
74 N9ae4dfade81e4c45a4b77d7495c2e8f1 schema:name doi
75 schema:value 10.1007/978-3-642-18902-9_98
76 rdf:type schema:PropertyValue
77 Na666702ef3a2411ba4230ddce677e8a1 schema:familyName Pfalzner
78 schema:givenName Susanne
79 rdf:type schema:Person
80 Naaee312145834298868b936cd2056737 rdf:first Nb338a90a547440aa9f993fae9b3d312e
81 rdf:rest N6e14b96a22474db4abbc2bc3990484ad
82 Nb338a90a547440aa9f993fae9b3d312e schema:familyName Straubmeier
83 schema:givenName Christian
84 rdf:type schema:Person
85 Nd66be4593f5a4fb491c8accd4760317c schema:name dimensions_id
86 schema:value pub.1009386379
87 rdf:type schema:PropertyValue
88 Nd82b0736f71d482b86a6c4f5d28ba401 schema:familyName Heithausen
89 schema:givenName Andreas
90 rdf:type schema:Person
91 Nd84aabf04c61419c8d875a10bbaf31e6 rdf:first Na666702ef3a2411ba4230ddce677e8a1
92 rdf:rest Nf7671d77f4a1470fa83863bd52b40242
93 Nef57e0b2e3214d9684d72e477cae1e2c rdf:first sg:person.015136145631.64
94 rdf:rest N0bd963e5aa8c4925874933523469543a
95 Nf7671d77f4a1470fa83863bd52b40242 rdf:first N576c6f29b51f45ccbc930b3de51a0220
96 rdf:rest Naaee312145834298868b936cd2056737
97 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
98 schema:name Chemical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Chemistry (incl. Structural)
102 rdf:type schema:DefinedTerm
103 sg:person.013166203321.09 schema:affiliation grid-institutes:grid.429508.2
104 schema:familyName Semenov
105 schema:givenName D.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166203321.09
107 rdf:type schema:Person
108 sg:person.015110315535.16 schema:affiliation grid-institutes:grid.465335.2
109 schema:familyName Wiebe
110 schema:givenName D.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110315535.16
112 rdf:type schema:Person
113 sg:person.015136145631.64 schema:affiliation grid-institutes:grid.429508.2
114 schema:familyName Henning
115 schema:givenName Th.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136145631.64
117 rdf:type schema:Person
118 grid-institutes:grid.429508.2 schema:alternateName Max-Planck-Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
119 schema:name Max-Planck-Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
120 rdf:type schema:Organization
121 grid-institutes:grid.465335.2 schema:alternateName Institute of Astronomy, Pyatnitskaya 48, 119017, Moscow, Russia
122 schema:name Institute of Astronomy, Pyatnitskaya 48, 119017, Moscow, Russia
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...