On a Conjugate Gradient/Newton/Penalty Method for the Solution of Obstacle Problems. Application to the Solution of an Eikonal System with ... View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Bernard Dacorogna , Roland Glowinski , Yuri Kuznetsov , Tsorng-Whay Pan

ABSTRACT

As the dedication suggests, many scientists in several countries have contributed significantly during these last fifty years to make conjugate gradient the efficient and versatile method it is today. However, this article is not limited to conjugate gradient and from that point of view, it owes a lot to M. Hestenes for his major contributions, not only to conjugate gradient, but also to calculus of variations and augmented Lagrangian methods. Indeed, in this article after investigating the solution of obstacle problems for elliptic and parabolic linear operators by a methodology combining penalty, Newton’s method and conjugate gradient algorithms, we shall apply the above methodology to the search for non-negative solutions to an Eikonal system with Dirichlet boundary conditions, after transforming it into a (non-convex problem from Calculus of Variations; in order to solve this non-convex minimization problem we shall apply an operator-splitting m ethod, and as shown in, e.g., [1], [2] operator splitting methods have close links with augmented Lagrangian methods and therefore with M. Hestenes contributions to Applied and Computational Mathematics. Since, in this article, we make a systematic use of conjugate gradient algorithms, and of cyclic reduction methods for the fast solution of discrete linear elliptic problems, a special credit has to be given to G. H. Golub for his outstanding contributions to these topics (among many other contributions, which include, in fact, complementarity methods for the solution of discrete obstacle problems). We deeply regret he could not attend the Jyväskylä Conference on “50 Years of Conjugate Gradients”. More... »

PAGES

263-283

Book

TITLE

Conjugate Gradient Algorithms and Finite Element Methods

ISBN

978-3-642-62159-8
978-3-642-18560-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-18560-1_17

DOI

http://dx.doi.org/10.1007/978-3-642-18560-1_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037657197


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "EPFL-DMA, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dacorogna", 
        "givenName": "Bernard", 
        "id": "sg:person.015720472255.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015720472255.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Department of Mathematics, University of Houston, 77204-3008, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glowinski", 
        "givenName": "Roland", 
        "id": "sg:person.01167212034.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167212034.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Department of Mathematics, University of Houston, 77204-3008, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsov", 
        "givenName": "Yuri", 
        "id": "sg:person.01322533652.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322533652.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Department of Mathematics, University of Houston, 77204-3008, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Tsorng-Whay", 
        "id": "sg:person.013505452521.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505452521.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1006252343", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1562-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006252343", 
          "https://doi.org/10.1007/978-1-4612-1562-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1562-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006252343", 
          "https://doi.org/10.1007/978-1-4612-1562-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-50235-4_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012694034", 
          "https://doi.org/10.1007/978-3-642-50235-4_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03167891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042101817", 
          "https://doi.org/10.1007/bf03167891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03167891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042101817", 
          "https://doi.org/10.1007/bf03167891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03167383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046669437", 
          "https://doi.org/10.1007/bf03167383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03167383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046669437", 
          "https://doi.org/10.1007/bf03167383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12613-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049770519", 
          "https://doi.org/10.1007/978-3-662-12613-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12613-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049770519", 
          "https://doi.org/10.1007/978-3-662-12613-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1051795203", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66165-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051795203", 
          "https://doi.org/10.1007/978-3-642-66165-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66165-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051795203", 
          "https://doi.org/10.1007/978-3-642-66165-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827597327668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1570-8659(03)09003-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090061650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556253"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "As the dedication suggests, many scientists in several countries have contributed significantly during these last fifty years to make conjugate gradient the efficient and versatile method it is today. However, this article is not limited to conjugate gradient and from that point of view, it owes a lot to M. Hestenes for his major contributions, not only to conjugate gradient, but also to calculus of variations and augmented Lagrangian methods. Indeed, in this article after investigating the solution of obstacle problems for elliptic and parabolic linear operators by a methodology combining penalty, Newton\u2019s method and conjugate gradient algorithms, we shall apply the above methodology to the search for non-negative solutions to an Eikonal system with Dirichlet boundary conditions, after transforming it into a (non-convex problem from Calculus of Variations; in order to solve this non-convex minimization problem we shall apply an operator-splitting m ethod, and as shown in, e.g., [1], [2] operator splitting methods have close links with augmented Lagrangian methods and therefore with M. Hestenes contributions to Applied and Computational Mathematics. Since, in this article, we make a systematic use of conjugate gradient algorithms, and of cyclic reduction methods for the fast solution of discrete linear elliptic problems, a special credit has to be given to G. H. Golub for his outstanding contributions to these topics (among many other contributions, which include, in fact, complementarity methods for the solution of discrete obstacle problems). We deeply regret he could not attend the Jyv\u00e4skyl\u00e4 Conference on \u201c50 Years of Conjugate Gradients\u201d.", 
    "editor": [
      {
        "familyName": "K\u0159\u00ed\u017eek", 
        "givenName": "Michal", 
        "type": "Person"
      }, 
      {
        "familyName": "Neittaanm\u00e4ki", 
        "givenName": "Pekka", 
        "type": "Person"
      }, 
      {
        "familyName": "Korotov", 
        "givenName": "Sergey", 
        "type": "Person"
      }, 
      {
        "familyName": "Glowinski", 
        "givenName": "Roland", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-18560-1_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-62159-8", 
        "978-3-642-18560-1"
      ], 
      "name": "Conjugate Gradient Algorithms and Finite Element Methods", 
      "type": "Book"
    }, 
    "name": "On a Conjugate Gradient/Newton/Penalty Method for the Solution of Obstacle Problems. Application to the Solution of an Eikonal System with Dirichlet Boundary Conditions", 
    "pagination": "263-283", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037657197"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-18560-1_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b3630b3d74aeeddc852e83b62754ed952253bab6a30a812682921a44462be1b9"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-18560-1_17", 
      "https://app.dimensions.ai/details/publication/pub.1037657197"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112036_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-18560-1_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18560-1_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18560-1_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18560-1_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18560-1_17'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-18560-1_17 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6165436917764da690c80c4606586e24
4 schema:citation sg:pub.10.1007/978-1-4612-1562-2
5 sg:pub.10.1007/978-3-642-50235-4_23
6 sg:pub.10.1007/978-3-642-66165-5
7 sg:pub.10.1007/978-3-662-12613-4
8 sg:pub.10.1007/bf03167383
9 sg:pub.10.1007/bf03167891
10 https://app.dimensions.ai/details/publication/pub.1006252343
11 https://app.dimensions.ai/details/publication/pub.1051795203
12 https://doi.org/10.1016/s1570-8659(03)09003-3
13 https://doi.org/10.1137/1.9781611970838
14 https://doi.org/10.1137/s1064827597327668
15 schema:datePublished 2004
16 schema:datePublishedReg 2004-01-01
17 schema:description As the dedication suggests, many scientists in several countries have contributed significantly during these last fifty years to make conjugate gradient the efficient and versatile method it is today. However, this article is not limited to conjugate gradient and from that point of view, it owes a lot to M. Hestenes for his major contributions, not only to conjugate gradient, but also to calculus of variations and augmented Lagrangian methods. Indeed, in this article after investigating the solution of obstacle problems for elliptic and parabolic linear operators by a methodology combining penalty, Newton’s method and conjugate gradient algorithms, we shall apply the above methodology to the search for non-negative solutions to an Eikonal system with Dirichlet boundary conditions, after transforming it into a (non-convex problem from Calculus of Variations; in order to solve this non-convex minimization problem we shall apply an operator-splitting m ethod, and as shown in, e.g., [1], [2] operator splitting methods have close links with augmented Lagrangian methods and therefore with M. Hestenes contributions to Applied and Computational Mathematics. Since, in this article, we make a systematic use of conjugate gradient algorithms, and of cyclic reduction methods for the fast solution of discrete linear elliptic problems, a special credit has to be given to G. H. Golub for his outstanding contributions to these topics (among many other contributions, which include, in fact, complementarity methods for the solution of discrete obstacle problems). We deeply regret he could not attend the Jyväskylä Conference on “50 Years of Conjugate Gradients”.
18 schema:editor Nd167436278a14630901c92df9d41a702
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N7312723c1206416aa87db650c9a85bf3
23 schema:name On a Conjugate Gradient/Newton/Penalty Method for the Solution of Obstacle Problems. Application to the Solution of an Eikonal System with Dirichlet Boundary Conditions
24 schema:pagination 263-283
25 schema:productId N4605b3f320f84f19be82b1f234f49704
26 N6a59592607744b50a9017d30dd16a67a
27 N74a3cc3180f64522a996aadb34affc40
28 schema:publisher Nf6a8b515ae754c0aaad0dc592e1e418d
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037657197
30 https://doi.org/10.1007/978-3-642-18560-1_17
31 schema:sdDatePublished 2019-04-16T08:41
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N31e21893fed5498298c14542d0fc876d
34 schema:url https://link.springer.com/10.1007%2F978-3-642-18560-1_17
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N31e21893fed5498298c14542d0fc876d schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N336d4566e23343c4b6a3930e820983f7 rdf:first N5df99d0c6dd44fc08d4a50931fb900e8
41 rdf:rest rdf:nil
42 N338020f2fbab4b4c8ec14370d45d9c52 rdf:first N58f116e549134c1cb5efa6531d658f28
43 rdf:rest N336d4566e23343c4b6a3930e820983f7
44 N4605b3f320f84f19be82b1f234f49704 schema:name readcube_id
45 schema:value b3630b3d74aeeddc852e83b62754ed952253bab6a30a812682921a44462be1b9
46 rdf:type schema:PropertyValue
47 N4a424d5722b240d582867ffc5ea2e4f3 rdf:first sg:person.013505452521.86
48 rdf:rest rdf:nil
49 N56180e536c8246a188a43b8b074c4768 schema:name EPFL-DMA, CH-1015, Lausanne, Switzerland
50 rdf:type schema:Organization
51 N58f116e549134c1cb5efa6531d658f28 schema:familyName Korotov
52 schema:givenName Sergey
53 rdf:type schema:Person
54 N5c71331840dd4983b08de57e4a17da94 rdf:first Nd90cbfe618e84c70bc856b68b48aec57
55 rdf:rest N338020f2fbab4b4c8ec14370d45d9c52
56 N5df99d0c6dd44fc08d4a50931fb900e8 schema:familyName Glowinski
57 schema:givenName Roland
58 rdf:type schema:Person
59 N6165436917764da690c80c4606586e24 rdf:first sg:person.015720472255.18
60 rdf:rest N9c93a72d14e9410f80cfdfc9dd7eccee
61 N6a59592607744b50a9017d30dd16a67a schema:name doi
62 schema:value 10.1007/978-3-642-18560-1_17
63 rdf:type schema:PropertyValue
64 N7312723c1206416aa87db650c9a85bf3 schema:isbn 978-3-642-18560-1
65 978-3-642-62159-8
66 schema:name Conjugate Gradient Algorithms and Finite Element Methods
67 rdf:type schema:Book
68 N74a3cc3180f64522a996aadb34affc40 schema:name dimensions_id
69 schema:value pub.1037657197
70 rdf:type schema:PropertyValue
71 N87f93bb04c6e421294bc06c73c770c8c schema:familyName Křížek
72 schema:givenName Michal
73 rdf:type schema:Person
74 N9c93a72d14e9410f80cfdfc9dd7eccee rdf:first sg:person.01167212034.31
75 rdf:rest Ncd3b375cda744bf4811f9705108ef1ec
76 Ncd3b375cda744bf4811f9705108ef1ec rdf:first sg:person.01322533652.12
77 rdf:rest N4a424d5722b240d582867ffc5ea2e4f3
78 Nd167436278a14630901c92df9d41a702 rdf:first N87f93bb04c6e421294bc06c73c770c8c
79 rdf:rest N5c71331840dd4983b08de57e4a17da94
80 Nd90cbfe618e84c70bc856b68b48aec57 schema:familyName Neittaanmäki
81 schema:givenName Pekka
82 rdf:type schema:Person
83 Nf6a8b515ae754c0aaad0dc592e1e418d schema:location Berlin, Heidelberg
84 schema:name Springer Berlin Heidelberg
85 rdf:type schema:Organisation
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
90 schema:name Pure Mathematics
91 rdf:type schema:DefinedTerm
92 sg:person.01167212034.31 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
93 schema:familyName Glowinski
94 schema:givenName Roland
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167212034.31
96 rdf:type schema:Person
97 sg:person.01322533652.12 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
98 schema:familyName Kuznetsov
99 schema:givenName Yuri
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322533652.12
101 rdf:type schema:Person
102 sg:person.013505452521.86 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
103 schema:familyName Pan
104 schema:givenName Tsorng-Whay
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505452521.86
106 rdf:type schema:Person
107 sg:person.015720472255.18 schema:affiliation N56180e536c8246a188a43b8b074c4768
108 schema:familyName Dacorogna
109 schema:givenName Bernard
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015720472255.18
111 rdf:type schema:Person
112 sg:pub.10.1007/978-1-4612-1562-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006252343
113 https://doi.org/10.1007/978-1-4612-1562-2
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-642-50235-4_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012694034
116 https://doi.org/10.1007/978-3-642-50235-4_23
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-642-66165-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051795203
119 https://doi.org/10.1007/978-3-642-66165-5
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-662-12613-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049770519
122 https://doi.org/10.1007/978-3-662-12613-4
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf03167383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046669437
125 https://doi.org/10.1007/bf03167383
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf03167891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042101817
128 https://doi.org/10.1007/bf03167891
129 rdf:type schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1006252343 schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1051795203 schema:CreativeWork
132 https://doi.org/10.1016/s1570-8659(03)09003-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090061650
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1137/1.9781611970838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556253
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1137/s1064827597327668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884579
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.266436.3 schema:alternateName University of Houston
139 schema:name Department of Mathematics, University of Houston, 77204-3008, Houston, TX, USA
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...