Sensitivity Analysis of ACO Start Strategies for Subset Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Stefka Fidanova , Pencho Marinov , Krassimir Atanassov

ABSTRACT

Ant Colony Optimization (ACO) has been used successfully to solve hard combinatorial optimization problems. This metaheuristic method is inspired by the foraging behavior of ant colonies, which manage to establish the shortest routes to feeding sources and back. On this work we use estimation of start nodes with respect to the quality of the solution. Various start strategies are offered. Sensitivity analysis of the algorithm behavior according strategy parameters is made. Our ideas is applied on Multiple Knapsack Problem (MKP) like a representative of the subset problems. More... »

PAGES

256-263

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_30

DOI

http://dx.doi.org/10.1007/978-3-642-18466-6_30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046127839


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marinov", 
        "givenName": "Pencho", 
        "id": "sg:person.010037302031.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037302031.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CLBME, Bulgarian Academy of Science, Acad. G. Bonchev str, bl 105, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.410344.6", 
          "name": [
            "CLBME, Bulgarian Academy of Science, Acad. G. Bonchev str, bl 105, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atanassov", 
        "givenName": "Krassimir", 
        "id": "sg:person.013707162366.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707162366.18"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Ant Colony Optimization (ACO) has been used successfully to solve hard combinatorial optimization problems. This metaheuristic method is inspired by the foraging behavior of ant colonies, which manage to establish the shortest routes to feeding sources and back. On this work we use estimation of start nodes with respect to the quality of the solution. Various start strategies are offered. Sensitivity analysis of the algorithm behavior according strategy parameters is made. Our ideas is applied on Multiple Knapsack Problem (MKP) like a representative of the subset problems.", 
    "editor": [
      {
        "familyName": "Dimov", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Dimova", 
        "givenName": "Stefka", 
        "type": "Person"
      }, 
      {
        "familyName": "Kolkovska", 
        "givenName": "Natalia", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-18466-6_30", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-18465-9", 
        "978-3-642-18466-6"
      ], 
      "name": "Numerical Methods and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "Ant Colony Optimization", 
      "multiple knapsack problem", 
      "hard combinatorial optimization problems", 
      "subset problem", 
      "combinatorial optimization problems", 
      "start strategy", 
      "optimization problem", 
      "metaheuristic methods", 
      "colony optimization", 
      "sensitivity analysis", 
      "knapsack problem", 
      "algorithm behavior", 
      "strategy parameters", 
      "ant colonies", 
      "problem", 
      "optimization", 
      "estimation", 
      "solution", 
      "feeding sources", 
      "shortest route", 
      "nodes", 
      "parameters", 
      "idea", 
      "foraging behaviour", 
      "analysis", 
      "behavior", 
      "respect", 
      "strategies", 
      "work", 
      "quality", 
      "source", 
      "representatives", 
      "route", 
      "colonies", 
      "method", 
      "ACO Start Strategies"
    ], 
    "name": "Sensitivity Analysis of ACO Start Strategies for Subset Problems", 
    "pagination": "256-263", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046127839"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-18466-6_30"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-18466-6_30", 
      "https://app.dimensions.ai/details/publication/pub.1046127839"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_305.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-18466-6_30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_30'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      23 PREDICATES      62 URIs      55 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-18466-6_30 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nd2fe2ee02fa94c3c892b585489354608
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description Ant Colony Optimization (ACO) has been used successfully to solve hard combinatorial optimization problems. This metaheuristic method is inspired by the foraging behavior of ant colonies, which manage to establish the shortest routes to feeding sources and back. On this work we use estimation of start nodes with respect to the quality of the solution. Various start strategies are offered. Sensitivity analysis of the algorithm behavior according strategy parameters is made. Our ideas is applied on Multiple Knapsack Problem (MKP) like a representative of the subset problems.
7 schema:editor N0aa50c130f1b46479ba761b68c2c22f1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6b658f0df5d54db9838ae09d8cb58077
12 schema:keywords ACO Start Strategies
13 Ant Colony Optimization
14 algorithm behavior
15 analysis
16 ant colonies
17 behavior
18 colonies
19 colony optimization
20 combinatorial optimization problems
21 estimation
22 feeding sources
23 foraging behaviour
24 hard combinatorial optimization problems
25 idea
26 knapsack problem
27 metaheuristic methods
28 method
29 multiple knapsack problem
30 nodes
31 optimization
32 optimization problem
33 parameters
34 problem
35 quality
36 representatives
37 respect
38 route
39 sensitivity analysis
40 shortest route
41 solution
42 source
43 start strategy
44 strategies
45 strategy parameters
46 subset problem
47 work
48 schema:name Sensitivity Analysis of ACO Start Strategies for Subset Problems
49 schema:pagination 256-263
50 schema:productId N7d4080d6a86c47ebb4677582abd60aa2
51 Nfc5d28d5d0a04c74b82752f2eab4602b
52 schema:publisher N79379927cacc48d890342bdf3a2d0645
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046127839
54 https://doi.org/10.1007/978-3-642-18466-6_30
55 schema:sdDatePublished 2021-11-01T18:55
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N3018af59ffd44cffb9d3a943dcc1411e
58 schema:url https://doi.org/10.1007/978-3-642-18466-6_30
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N06aeff7e4a524beeb84642c0e6b2422e schema:familyName Dimov
63 schema:givenName Ivan
64 rdf:type schema:Person
65 N0aa50c130f1b46479ba761b68c2c22f1 rdf:first N06aeff7e4a524beeb84642c0e6b2422e
66 rdf:rest N2115eb70bbe64ae3b2272c1d1eeed6e1
67 N2115eb70bbe64ae3b2272c1d1eeed6e1 rdf:first Nf438f1b8b55b4caa81145b0043de3d84
68 rdf:rest N3db6a3eafcde4e2c8d7d192b31d53720
69 N3018af59ffd44cffb9d3a943dcc1411e schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N3db6a3eafcde4e2c8d7d192b31d53720 rdf:first Ndeeaaad92dd244c5a6374d157a0aaedb
72 rdf:rest rdf:nil
73 N6b658f0df5d54db9838ae09d8cb58077 schema:isbn 978-3-642-18465-9
74 978-3-642-18466-6
75 schema:name Numerical Methods and Applications
76 rdf:type schema:Book
77 N79379927cacc48d890342bdf3a2d0645 schema:name Springer Nature
78 rdf:type schema:Organisation
79 N7d4080d6a86c47ebb4677582abd60aa2 schema:name doi
80 schema:value 10.1007/978-3-642-18466-6_30
81 rdf:type schema:PropertyValue
82 N8e934e42e7f7443a97f42f6c4f3d270a rdf:first sg:person.010037302031.75
83 rdf:rest Nf90adc5423fe4d25bf031fda07958865
84 Nd2fe2ee02fa94c3c892b585489354608 rdf:first sg:person.011173106320.18
85 rdf:rest N8e934e42e7f7443a97f42f6c4f3d270a
86 Ndeeaaad92dd244c5a6374d157a0aaedb schema:familyName Kolkovska
87 schema:givenName Natalia
88 rdf:type schema:Person
89 Nf438f1b8b55b4caa81145b0043de3d84 schema:familyName Dimova
90 schema:givenName Stefka
91 rdf:type schema:Person
92 Nf90adc5423fe4d25bf031fda07958865 rdf:first sg:person.013707162366.18
93 rdf:rest rdf:nil
94 Nfc5d28d5d0a04c74b82752f2eab4602b schema:name dimensions_id
95 schema:value pub.1046127839
96 rdf:type schema:PropertyValue
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
101 schema:name Numerical and Computational Mathematics
102 rdf:type schema:DefinedTerm
103 sg:person.010037302031.75 schema:affiliation grid-institutes:grid.424859.6
104 schema:familyName Marinov
105 schema:givenName Pencho
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037302031.75
107 rdf:type schema:Person
108 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.424859.6
109 schema:familyName Fidanova
110 schema:givenName Stefka
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
112 rdf:type schema:Person
113 sg:person.013707162366.18 schema:affiliation grid-institutes:grid.410344.6
114 schema:familyName Atanassov
115 schema:givenName Krassimir
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707162366.18
117 rdf:type schema:Person
118 grid-institutes:grid.410344.6 schema:alternateName CLBME, Bulgarian Academy of Science, Acad. G. Bonchev str, bl 105, 1113, Sofia, Bulgaria
119 schema:name CLBME, Bulgarian Academy of Science, Acad. G. Bonchev str, bl 105, 1113, Sofia, Bulgaria
120 rdf:type schema:Organization
121 grid-institutes:grid.424859.6 schema:alternateName IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria
122 schema:name IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...