Start Strategies of ACO Applied on Subset Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Stefka Fidanova , Krassimir Atanassov , Pencho Marinov

ABSTRACT

Ant Colony Optimization is a stochastic search method that mimic the social behavior of real ants colonies, which manage to establish the shortest routs to feeding sources and back. Such algorithms have been developed to arrive at near-optimum solutions to large-scale optimization problems, for which traditional mathematical techniques may fail. In this paper on each iteration estimations of the start nodes of the ants are made. Several start strategies are prepared and combined. Benchmark comparisons among the strategies are presented in terms of quality of the results. Based on this comparison analysis, the performance of the algorithm is discussed along with some guidelines for determining the best strategy. The study presents ideas that should be beneficial to both practitioners and researchers involved in solving optimization problems. More... »

PAGES

248-255

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_29

DOI

http://dx.doi.org/10.1007/978-3-642-18466-6_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003473724


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CLBME, Bulgarian Academy of Science, Acad. G. Bonchev str, bl 105, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.410344.6", 
          "name": [
            "CLBME, Bulgarian Academy of Science, Acad. G. Bonchev str, bl 105, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atanassov", 
        "givenName": "Krassimir", 
        "id": "sg:person.013707162366.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707162366.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marinov", 
        "givenName": "Pencho", 
        "id": "sg:person.010037302031.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037302031.75"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Ant Colony Optimization is a stochastic search method that mimic the social behavior of real ants colonies, which manage to establish the shortest routs to feeding sources and back. Such algorithms have been developed to arrive at near-optimum solutions to large-scale optimization problems, for which traditional mathematical techniques may fail. In this paper on each iteration estimations of the start nodes of the ants are made. Several start strategies are prepared and combined. Benchmark comparisons among the strategies are presented in terms of quality of the results. Based on this comparison analysis, the performance of the algorithm is discussed along with some guidelines for determining the best strategy. The study presents ideas that should be beneficial to both practitioners and researchers involved in solving optimization problems.", 
    "editor": [
      {
        "familyName": "Dimov", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Dimova", 
        "givenName": "Stefka", 
        "type": "Person"
      }, 
      {
        "familyName": "Kolkovska", 
        "givenName": "Natalia", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-18466-6_29", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-18465-9", 
        "978-3-642-18466-6"
      ], 
      "name": "Numerical Methods and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "optimization problem", 
      "large-scale optimization problems", 
      "traditional mathematical techniques", 
      "stochastic search method", 
      "real ant colonies", 
      "start strategy", 
      "Ant Colony Optimization", 
      "mathematical techniques", 
      "shortest rout", 
      "colony optimization", 
      "iteration estimation", 
      "subset problem", 
      "optimum solution", 
      "such algorithms", 
      "search method", 
      "benchmark comparison", 
      "ant colonies", 
      "problem", 
      "algorithm", 
      "start node", 
      "optimization", 
      "comparison analysis", 
      "ACO", 
      "estimation", 
      "terms of quality", 
      "solution", 
      "feeding sources", 
      "nodes", 
      "idea", 
      "terms", 
      "performance", 
      "strategies", 
      "technique", 
      "best strategy", 
      "results", 
      "researchers", 
      "analysis", 
      "behavior", 
      "ants", 
      "comparison", 
      "quality", 
      "social behavior", 
      "source", 
      "rout", 
      "practitioners", 
      "study", 
      "guidelines", 
      "colonies", 
      "paper", 
      "method"
    ], 
    "name": "Start Strategies of ACO Applied on Subset Problems", 
    "pagination": "248-255", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003473724"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-18466-6_29"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-18466-6_29", 
      "https://app.dimensions.ai/details/publication/pub.1003473724"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_196.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-18466-6_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_29'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      23 PREDICATES      77 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-18466-6_29 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 schema:author N3fbe65e28c5045a49c441a8bb263da44
5 schema:datePublished 2011
6 schema:datePublishedReg 2011-01-01
7 schema:description Ant Colony Optimization is a stochastic search method that mimic the social behavior of real ants colonies, which manage to establish the shortest routs to feeding sources and back. Such algorithms have been developed to arrive at near-optimum solutions to large-scale optimization problems, for which traditional mathematical techniques may fail. In this paper on each iteration estimations of the start nodes of the ants are made. Several start strategies are prepared and combined. Benchmark comparisons among the strategies are presented in terms of quality of the results. Based on this comparison analysis, the performance of the algorithm is discussed along with some guidelines for determining the best strategy. The study presents ideas that should be beneficial to both practitioners and researchers involved in solving optimization problems.
8 schema:editor N148300c76d7949288964e18ffb4bf6c1
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Ndcb6058dcd414e33bf23ebddaaa469bd
13 schema:keywords ACO
14 Ant Colony Optimization
15 algorithm
16 analysis
17 ant colonies
18 ants
19 behavior
20 benchmark comparison
21 best strategy
22 colonies
23 colony optimization
24 comparison
25 comparison analysis
26 estimation
27 feeding sources
28 guidelines
29 idea
30 iteration estimation
31 large-scale optimization problems
32 mathematical techniques
33 method
34 nodes
35 optimization
36 optimization problem
37 optimum solution
38 paper
39 performance
40 practitioners
41 problem
42 quality
43 real ant colonies
44 researchers
45 results
46 rout
47 search method
48 shortest rout
49 social behavior
50 solution
51 source
52 start node
53 start strategy
54 stochastic search method
55 strategies
56 study
57 subset problem
58 such algorithms
59 technique
60 terms
61 terms of quality
62 traditional mathematical techniques
63 schema:name Start Strategies of ACO Applied on Subset Problems
64 schema:pagination 248-255
65 schema:productId N8853bb60d76c4bd2925228affea97d79
66 Nff00efb260dd40bcba5ef136840f5625
67 schema:publisher N58184dd85a6642dbb56edeb4750f97fa
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003473724
69 https://doi.org/10.1007/978-3-642-18466-6_29
70 schema:sdDatePublished 2021-12-01T19:59
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N8434c5ff9dcf4fdf99d9690f039cda4c
73 schema:url https://doi.org/10.1007/978-3-642-18466-6_29
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N1410a8bc1a9d4167ad4c8e53fbf77e92 schema:familyName Dimov
78 schema:givenName Ivan
79 rdf:type schema:Person
80 N148300c76d7949288964e18ffb4bf6c1 rdf:first N1410a8bc1a9d4167ad4c8e53fbf77e92
81 rdf:rest N48f48433484c41efaaf8e5c369b6cc3c
82 N152f03fbc02240b5b362c9d4afcfaeda rdf:first sg:person.010037302031.75
83 rdf:rest rdf:nil
84 N1787a21442234711a688e497dca1fd3b schema:familyName Dimova
85 schema:givenName Stefka
86 rdf:type schema:Person
87 N3fbe65e28c5045a49c441a8bb263da44 rdf:first sg:person.011173106320.18
88 rdf:rest Na428e0cda1ef41029a1594faf5634fdf
89 N48f48433484c41efaaf8e5c369b6cc3c rdf:first N1787a21442234711a688e497dca1fd3b
90 rdf:rest Na5a94eeba01141b19fcf40abae1772c1
91 N58184dd85a6642dbb56edeb4750f97fa schema:name Springer Nature
92 rdf:type schema:Organisation
93 N8434c5ff9dcf4fdf99d9690f039cda4c schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N8853bb60d76c4bd2925228affea97d79 schema:name doi
96 schema:value 10.1007/978-3-642-18466-6_29
97 rdf:type schema:PropertyValue
98 Na428e0cda1ef41029a1594faf5634fdf rdf:first sg:person.013707162366.18
99 rdf:rest N152f03fbc02240b5b362c9d4afcfaeda
100 Na5a94eeba01141b19fcf40abae1772c1 rdf:first Ne04202f6dbfa49b096cb915486dddb81
101 rdf:rest rdf:nil
102 Ndcb6058dcd414e33bf23ebddaaa469bd schema:isbn 978-3-642-18465-9
103 978-3-642-18466-6
104 schema:name Numerical Methods and Applications
105 rdf:type schema:Book
106 Ne04202f6dbfa49b096cb915486dddb81 schema:familyName Kolkovska
107 schema:givenName Natalia
108 rdf:type schema:Person
109 Nff00efb260dd40bcba5ef136840f5625 schema:name dimensions_id
110 schema:value pub.1003473724
111 rdf:type schema:PropertyValue
112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
113 schema:name Mathematical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
116 schema:name Applied Mathematics
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
119 schema:name Numerical and Computational Mathematics
120 rdf:type schema:DefinedTerm
121 sg:person.010037302031.75 schema:affiliation grid-institutes:grid.424859.6
122 schema:familyName Marinov
123 schema:givenName Pencho
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037302031.75
125 rdf:type schema:Person
126 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.424859.6
127 schema:familyName Fidanova
128 schema:givenName Stefka
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
130 rdf:type schema:Person
131 sg:person.013707162366.18 schema:affiliation grid-institutes:grid.410344.6
132 schema:familyName Atanassov
133 schema:givenName Krassimir
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707162366.18
135 rdf:type schema:Person
136 grid-institutes:grid.410344.6 schema:alternateName CLBME, Bulgarian Academy of Science, Acad. G. Bonchev str, bl 105, 1113, Sofia, Bulgaria
137 schema:name CLBME, Bulgarian Academy of Science, Acad. G. Bonchev str, bl 105, 1113, Sofia, Bulgaria
138 rdf:type schema:Organization
139 grid-institutes:grid.424859.6 schema:alternateName IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria
140 schema:name IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...