Start Strategies of ACO Applied on Subset Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Stefka Fidanova , Krassimir Atanassov , Pencho Marinov

ABSTRACT

Ant Colony Optimization is a stochastic search method that mimic the social behavior of real ants colonies, which manage to establish the shortest routs to feeding sources and back. Such algorithms have been developed to arrive at near-optimum solutions to large-scale optimization problems, for which traditional mathematical techniques may fail. In this paper on each iteration estimations of the start nodes of the ants are made. Several start strategies are prepared and combined. Benchmark comparisons among the strategies are presented in terms of quality of the results. Based on this comparison analysis, the performance of the algorithm is discussed along with some guidelines for determining the best strategy. The study presents ideas that should be beneficial to both practitioners and researchers involved in solving optimization problems. More... »

PAGES

248-255

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_29

DOI

http://dx.doi.org/10.1007/978-3-642-18466-6_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003473724


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CLBME, Bulgarian Academy of Science, Acad. G. Bonchev str, bl 105, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.410344.6", 
          "name": [
            "CLBME, Bulgarian Academy of Science, Acad. G. Bonchev str, bl 105, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atanassov", 
        "givenName": "Krassimir", 
        "id": "sg:person.013707162366.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707162366.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marinov", 
        "givenName": "Pencho", 
        "id": "sg:person.010037302031.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037302031.75"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Ant Colony Optimization is a stochastic search method that mimic the social behavior of real ants colonies, which manage to establish the shortest routs to feeding sources and back. Such algorithms have been developed to arrive at near-optimum solutions to large-scale optimization problems, for which traditional mathematical techniques may fail. In this paper on each iteration estimations of the start nodes of the ants are made. Several start strategies are prepared and combined. Benchmark comparisons among the strategies are presented in terms of quality of the results. Based on this comparison analysis, the performance of the algorithm is discussed along with some guidelines for determining the best strategy. The study presents ideas that should be beneficial to both practitioners and researchers involved in solving optimization problems.", 
    "editor": [
      {
        "familyName": "Dimov", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Dimova", 
        "givenName": "Stefka", 
        "type": "Person"
      }, 
      {
        "familyName": "Kolkovska", 
        "givenName": "Natalia", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-18466-6_29", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-18465-9", 
        "978-3-642-18466-6"
      ], 
      "name": "Numerical Methods and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "optimization problem", 
      "large-scale optimization problems", 
      "traditional mathematical techniques", 
      "stochastic search method", 
      "real ant colonies", 
      "start strategy", 
      "Ant Colony Optimization", 
      "mathematical techniques", 
      "shortest rout", 
      "colony optimization", 
      "iteration estimation", 
      "subset problem", 
      "optimum solution", 
      "such algorithms", 
      "search method", 
      "benchmark comparison", 
      "ant colonies", 
      "problem", 
      "algorithm", 
      "start node", 
      "optimization", 
      "comparison analysis", 
      "ACO", 
      "estimation", 
      "terms of quality", 
      "solution", 
      "feeding sources", 
      "nodes", 
      "idea", 
      "terms", 
      "performance", 
      "strategies", 
      "technique", 
      "best strategy", 
      "results", 
      "researchers", 
      "analysis", 
      "behavior", 
      "ants", 
      "comparison", 
      "quality", 
      "social behavior", 
      "source", 
      "rout", 
      "practitioners", 
      "study", 
      "guidelines", 
      "colonies", 
      "paper", 
      "method"
    ], 
    "name": "Start Strategies of ACO Applied on Subset Problems", 
    "pagination": "248-255", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003473724"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-18466-6_29"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-18466-6_29", 
      "https://app.dimensions.ai/details/publication/pub.1003473724"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_173.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-18466-6_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_29'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      23 PREDICATES      77 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-18466-6_29 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 schema:author N7d1b94b633a246fca31d1336c6c870c5
5 schema:datePublished 2011
6 schema:datePublishedReg 2011-01-01
7 schema:description Ant Colony Optimization is a stochastic search method that mimic the social behavior of real ants colonies, which manage to establish the shortest routs to feeding sources and back. Such algorithms have been developed to arrive at near-optimum solutions to large-scale optimization problems, for which traditional mathematical techniques may fail. In this paper on each iteration estimations of the start nodes of the ants are made. Several start strategies are prepared and combined. Benchmark comparisons among the strategies are presented in terms of quality of the results. Based on this comparison analysis, the performance of the algorithm is discussed along with some guidelines for determining the best strategy. The study presents ideas that should be beneficial to both practitioners and researchers involved in solving optimization problems.
8 schema:editor N8c3c69c1779043919ddf19add836afe5
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nf831946618f44a9b8f2d40e5fee28581
13 schema:keywords ACO
14 Ant Colony Optimization
15 algorithm
16 analysis
17 ant colonies
18 ants
19 behavior
20 benchmark comparison
21 best strategy
22 colonies
23 colony optimization
24 comparison
25 comparison analysis
26 estimation
27 feeding sources
28 guidelines
29 idea
30 iteration estimation
31 large-scale optimization problems
32 mathematical techniques
33 method
34 nodes
35 optimization
36 optimization problem
37 optimum solution
38 paper
39 performance
40 practitioners
41 problem
42 quality
43 real ant colonies
44 researchers
45 results
46 rout
47 search method
48 shortest rout
49 social behavior
50 solution
51 source
52 start node
53 start strategy
54 stochastic search method
55 strategies
56 study
57 subset problem
58 such algorithms
59 technique
60 terms
61 terms of quality
62 traditional mathematical techniques
63 schema:name Start Strategies of ACO Applied on Subset Problems
64 schema:pagination 248-255
65 schema:productId N91437f06959c49c18b3970e8939bfb2d
66 Nc3176a00110343eb876c2e83b5894f2e
67 schema:publisher Ncddd9f1effd94926ade0fb0415e110c4
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003473724
69 https://doi.org/10.1007/978-3-642-18466-6_29
70 schema:sdDatePublished 2022-01-01T19:10
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Ne91741b4477a4a4aa7813f26e94d3f11
73 schema:url https://doi.org/10.1007/978-3-642-18466-6_29
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N389b494b9d804d0c84f0df5793cb2bfb rdf:first Nc8883e6f917d4ee9a5c1ec648a75c716
78 rdf:rest Nee98fd5b7137486ea991ec55e3ed9afa
79 N570adc68f5f84ca99bb0ee7a65f86d85 schema:familyName Kolkovska
80 schema:givenName Natalia
81 rdf:type schema:Person
82 N67445476ebff498b80ae8cf76ffbb00e rdf:first sg:person.010037302031.75
83 rdf:rest rdf:nil
84 N7d1b94b633a246fca31d1336c6c870c5 rdf:first sg:person.011173106320.18
85 rdf:rest Nee5524b5b88247d0b7df8286777c7a63
86 N8c3c69c1779043919ddf19add836afe5 rdf:first N9e7444b32a7c467095dc6b4d7e8d5fb3
87 rdf:rest N389b494b9d804d0c84f0df5793cb2bfb
88 N91437f06959c49c18b3970e8939bfb2d schema:name dimensions_id
89 schema:value pub.1003473724
90 rdf:type schema:PropertyValue
91 N9e7444b32a7c467095dc6b4d7e8d5fb3 schema:familyName Dimov
92 schema:givenName Ivan
93 rdf:type schema:Person
94 Nc3176a00110343eb876c2e83b5894f2e schema:name doi
95 schema:value 10.1007/978-3-642-18466-6_29
96 rdf:type schema:PropertyValue
97 Nc8883e6f917d4ee9a5c1ec648a75c716 schema:familyName Dimova
98 schema:givenName Stefka
99 rdf:type schema:Person
100 Ncddd9f1effd94926ade0fb0415e110c4 schema:name Springer Nature
101 rdf:type schema:Organisation
102 Ne91741b4477a4a4aa7813f26e94d3f11 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nee5524b5b88247d0b7df8286777c7a63 rdf:first sg:person.013707162366.18
105 rdf:rest N67445476ebff498b80ae8cf76ffbb00e
106 Nee98fd5b7137486ea991ec55e3ed9afa rdf:first N570adc68f5f84ca99bb0ee7a65f86d85
107 rdf:rest rdf:nil
108 Nf831946618f44a9b8f2d40e5fee28581 schema:isbn 978-3-642-18465-9
109 978-3-642-18466-6
110 schema:name Numerical Methods and Applications
111 rdf:type schema:Book
112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
113 schema:name Mathematical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
116 schema:name Applied Mathematics
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
119 schema:name Numerical and Computational Mathematics
120 rdf:type schema:DefinedTerm
121 sg:person.010037302031.75 schema:affiliation grid-institutes:grid.424859.6
122 schema:familyName Marinov
123 schema:givenName Pencho
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037302031.75
125 rdf:type schema:Person
126 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.424859.6
127 schema:familyName Fidanova
128 schema:givenName Stefka
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
130 rdf:type schema:Person
131 sg:person.013707162366.18 schema:affiliation grid-institutes:grid.410344.6
132 schema:familyName Atanassov
133 schema:givenName Krassimir
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707162366.18
135 rdf:type schema:Person
136 grid-institutes:grid.410344.6 schema:alternateName CLBME, Bulgarian Academy of Science, Acad. G. Bonchev str, bl 105, 1113, Sofia, Bulgaria
137 schema:name CLBME, Bulgarian Academy of Science, Acad. G. Bonchev str, bl 105, 1113, Sofia, Bulgaria
138 rdf:type schema:Organization
139 grid-institutes:grid.424859.6 schema:alternateName IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria
140 schema:name IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.25A, 1113, Sofia, Bulgaria
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...