Stochastic Algorithm for Solving the Wigner-Boltzmann Correction Equation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

M. Nedjalkov , S. Selberherr , I. Dimov

ABSTRACT

The quantum-kinetics of current carriers in modern nanoscale semiconductor devices is determined by the interplay between coherent phenomena and processes which destroy the quantum phase correlations. The carrier behavior has been recently described with a two-stage Wigner function model, where the phase-breaking effects are considered as a correction to the coherent counterpart. The correction function satisfies a Boltzmann-like equation.A stochastic method for solving the equation for the correction function is developed in this work, under the condition for an a-priori knowledge of the coherent Wigner function. The steps of an almost optimal algorithm for a stepwise evaluation of the correction function are presented. The algorithm conforms the well established Monte Carlo device simulation methods, and thus allows an easy implementation. More... »

PAGES

95-102

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_10

DOI

http://dx.doi.org/10.1007/978-3-642-18466-6_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032299361


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, A-1040, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "M.", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, A-1040, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selberherr", 
        "givenName": "S.", 
        "id": "sg:person.013033344117.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G.Bontchev str Bl25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G.Bontchev str Bl25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dimov", 
        "givenName": "I.", 
        "id": "sg:person.013060500063.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013060500063.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "The quantum-kinetics of current carriers in modern nanoscale semiconductor devices is determined by the interplay between coherent phenomena and processes which destroy the quantum phase correlations. The carrier behavior has been recently described with a two-stage Wigner function model, where the phase-breaking effects are considered as a correction to the coherent counterpart. The correction function satisfies a Boltzmann-like equation.A stochastic method for solving the equation for the correction function is developed in this work, under the condition for an a-priori knowledge of the coherent Wigner function. The steps of an almost optimal algorithm for a stepwise evaluation of the correction function are presented. The algorithm conforms the well established Monte Carlo device simulation methods, and thus allows an easy implementation.", 
    "editor": [
      {
        "familyName": "Dimov", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Dimova", 
        "givenName": "Stefka", 
        "type": "Person"
      }, 
      {
        "familyName": "Kolkovska", 
        "givenName": "Natalia", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-18466-6_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-18465-9", 
        "978-3-642-18466-6"
      ], 
      "name": "Numerical Methods and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "phase-breaking effect", 
      "Wigner function model", 
      "nanoscale semiconductor devices", 
      "device simulation method", 
      "coherent phenomena", 
      "Boltzmann-like equation", 
      "Wigner function", 
      "carrier behavior", 
      "semiconductor devices", 
      "coherent counterpart", 
      "current carriers", 
      "phase correlation", 
      "correction function", 
      "stochastic algorithm", 
      "stochastic method", 
      "correction equation", 
      "optimal algorithm", 
      "equations", 
      "simulation method", 
      "easy implementation", 
      "function model", 
      "wells", 
      "algorithm", 
      "devices", 
      "carriers", 
      "correction", 
      "phenomenon", 
      "interplay", 
      "function", 
      "stepwise evaluation", 
      "method", 
      "model", 
      "counterparts", 
      "work", 
      "implementation", 
      "process", 
      "correlation", 
      "effect", 
      "behavior", 
      "step", 
      "conditions", 
      "evaluation", 
      "knowledge", 
      "modern nanoscale semiconductor devices", 
      "quantum phase correlations", 
      "two-stage Wigner function model", 
      "coherent Wigner function", 
      "Monte Carlo device simulation methods", 
      "Carlo device simulation methods", 
      "Wigner-Boltzmann Correction Equation"
    ], 
    "name": "Stochastic Algorithm for Solving the Wigner-Boltzmann Correction Equation", 
    "pagination": "95-102", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032299361"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-18466-6_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-18466-6_10", 
      "https://app.dimensions.ai/details/publication/pub.1032299361"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_280.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-18466-6_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_10'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      23 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-18466-6_10 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N79f37fad913143aebded965e16ddb22e
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description The quantum-kinetics of current carriers in modern nanoscale semiconductor devices is determined by the interplay between coherent phenomena and processes which destroy the quantum phase correlations. The carrier behavior has been recently described with a two-stage Wigner function model, where the phase-breaking effects are considered as a correction to the coherent counterpart. The correction function satisfies a Boltzmann-like equation.A stochastic method for solving the equation for the correction function is developed in this work, under the condition for an a-priori knowledge of the coherent Wigner function. The steps of an almost optimal algorithm for a stepwise evaluation of the correction function are presented. The algorithm conforms the well established Monte Carlo device simulation methods, and thus allows an easy implementation.
7 schema:editor Ne503cec025ef4bc6b118f762e8186087
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na7abc85573724d3b9aee1b22c4ff8094
12 schema:keywords Boltzmann-like equation
13 Carlo device simulation methods
14 Monte Carlo device simulation methods
15 Wigner function
16 Wigner function model
17 Wigner-Boltzmann Correction Equation
18 algorithm
19 behavior
20 carrier behavior
21 carriers
22 coherent Wigner function
23 coherent counterpart
24 coherent phenomena
25 conditions
26 correction
27 correction equation
28 correction function
29 correlation
30 counterparts
31 current carriers
32 device simulation method
33 devices
34 easy implementation
35 effect
36 equations
37 evaluation
38 function
39 function model
40 implementation
41 interplay
42 knowledge
43 method
44 model
45 modern nanoscale semiconductor devices
46 nanoscale semiconductor devices
47 optimal algorithm
48 phase correlation
49 phase-breaking effect
50 phenomenon
51 process
52 quantum phase correlations
53 semiconductor devices
54 simulation method
55 step
56 stepwise evaluation
57 stochastic algorithm
58 stochastic method
59 two-stage Wigner function model
60 wells
61 work
62 schema:name Stochastic Algorithm for Solving the Wigner-Boltzmann Correction Equation
63 schema:pagination 95-102
64 schema:productId N60a65ffdb6d449e094dbb05e7a94150f
65 Ncd19efed9e8246a09938cd8372dc3bf6
66 schema:publisher N9281b0b9704b441eb3cda763f606d286
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032299361
68 https://doi.org/10.1007/978-3-642-18466-6_10
69 schema:sdDatePublished 2022-01-01T19:16
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N138c39bfede24c4089a548ee65b4700f
72 schema:url https://doi.org/10.1007/978-3-642-18466-6_10
73 sgo:license sg:explorer/license/
74 sgo:sdDataset chapters
75 rdf:type schema:Chapter
76 N138c39bfede24c4089a548ee65b4700f schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N16ac0ed591454bde9d6d13a05c8b08d1 schema:familyName Dimova
79 schema:givenName Stefka
80 rdf:type schema:Person
81 N1a6a6adc79e347c8a57c3b386383a796 schema:familyName Dimov
82 schema:givenName Ivan
83 rdf:type schema:Person
84 N5d31ee98f2e64765bb765ea221b43bfe rdf:first sg:person.013033344117.92
85 rdf:rest Nac36e238f92945188a2064be35c1ac1f
86 N60a65ffdb6d449e094dbb05e7a94150f schema:name doi
87 schema:value 10.1007/978-3-642-18466-6_10
88 rdf:type schema:PropertyValue
89 N681f2d38b1d24855989743e3d5afc171 rdf:first N6cf0983c92d449579b4bded064135a6a
90 rdf:rest rdf:nil
91 N6cf0983c92d449579b4bded064135a6a schema:familyName Kolkovska
92 schema:givenName Natalia
93 rdf:type schema:Person
94 N79f37fad913143aebded965e16ddb22e rdf:first sg:person.011142023427.48
95 rdf:rest N5d31ee98f2e64765bb765ea221b43bfe
96 N9281b0b9704b441eb3cda763f606d286 schema:name Springer Nature
97 rdf:type schema:Organisation
98 Na7abc85573724d3b9aee1b22c4ff8094 schema:isbn 978-3-642-18465-9
99 978-3-642-18466-6
100 schema:name Numerical Methods and Applications
101 rdf:type schema:Book
102 Nac36e238f92945188a2064be35c1ac1f rdf:first sg:person.013060500063.42
103 rdf:rest rdf:nil
104 Ncd19efed9e8246a09938cd8372dc3bf6 schema:name dimensions_id
105 schema:value pub.1032299361
106 rdf:type schema:PropertyValue
107 Ne503cec025ef4bc6b118f762e8186087 rdf:first N1a6a6adc79e347c8a57c3b386383a796
108 rdf:rest Ne8205032ab764edf8e913028187458f2
109 Ne8205032ab764edf8e913028187458f2 rdf:first N16ac0ed591454bde9d6d13a05c8b08d1
110 rdf:rest N681f2d38b1d24855989743e3d5afc171
111 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
112 schema:name Mathematical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
115 schema:name Statistics
116 rdf:type schema:DefinedTerm
117 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
118 schema:familyName Nedjalkov
119 schema:givenName M.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
121 rdf:type schema:Person
122 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
123 schema:familyName Selberherr
124 schema:givenName S.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
126 rdf:type schema:Person
127 sg:person.013060500063.42 schema:affiliation grid-institutes:grid.424859.6
128 schema:familyName Dimov
129 schema:givenName I.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013060500063.42
131 rdf:type schema:Person
132 grid-institutes:grid.424859.6 schema:alternateName Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G.Bontchev str Bl25A, 1113, Sofia, Bulgaria
133 schema:name Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G.Bontchev str Bl25A, 1113, Sofia, Bulgaria
134 rdf:type schema:Organization
135 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, A-1040, Vienna, Austria
136 schema:name Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, A-1040, Vienna, Austria
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...