Stochastic Algorithm for Solving the Wigner-Boltzmann Correction Equation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

M. Nedjalkov , S. Selberherr , I. Dimov

ABSTRACT

The quantum-kinetics of current carriers in modern nanoscale semiconductor devices is determined by the interplay between coherent phenomena and processes which destroy the quantum phase correlations. The carrier behavior has been recently described with a two-stage Wigner function model, where the phase-breaking effects are considered as a correction to the coherent counterpart. The correction function satisfies a Boltzmann-like equation.A stochastic method for solving the equation for the correction function is developed in this work, under the condition for an a-priori knowledge of the coherent Wigner function. The steps of an almost optimal algorithm for a stepwise evaluation of the correction function are presented. The algorithm conforms the well established Monte Carlo device simulation methods, and thus allows an easy implementation. More... »

PAGES

95-102

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_10

DOI

http://dx.doi.org/10.1007/978-3-642-18466-6_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032299361


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, A-1040, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "M.", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, A-1040, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selberherr", 
        "givenName": "S.", 
        "id": "sg:person.013033344117.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G.Bontchev str Bl25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G.Bontchev str Bl25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dimov", 
        "givenName": "I.", 
        "id": "sg:person.013060500063.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013060500063.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "The quantum-kinetics of current carriers in modern nanoscale semiconductor devices is determined by the interplay between coherent phenomena and processes which destroy the quantum phase correlations. The carrier behavior has been recently described with a two-stage Wigner function model, where the phase-breaking effects are considered as a correction to the coherent counterpart. The correction function satisfies a Boltzmann-like equation.A stochastic method for solving the equation for the correction function is developed in this work, under the condition for an a-priori knowledge of the coherent Wigner function. The steps of an almost optimal algorithm for a stepwise evaluation of the correction function are presented. The algorithm conforms the well established Monte Carlo device simulation methods, and thus allows an easy implementation.", 
    "editor": [
      {
        "familyName": "Dimov", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Dimova", 
        "givenName": "Stefka", 
        "type": "Person"
      }, 
      {
        "familyName": "Kolkovska", 
        "givenName": "Natalia", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-18466-6_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-18465-9", 
        "978-3-642-18466-6"
      ], 
      "name": "Numerical Methods and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "phase-breaking effect", 
      "Wigner function model", 
      "nanoscale semiconductor devices", 
      "device simulation method", 
      "coherent phenomena", 
      "Boltzmann-like equation", 
      "Wigner function", 
      "carrier behavior", 
      "semiconductor devices", 
      "coherent counterpart", 
      "current carriers", 
      "phase correlation", 
      "correction function", 
      "stochastic algorithm", 
      "stochastic method", 
      "correction equation", 
      "optimal algorithm", 
      "equations", 
      "simulation method", 
      "easy implementation", 
      "function model", 
      "wells", 
      "algorithm", 
      "devices", 
      "carriers", 
      "correction", 
      "phenomenon", 
      "interplay", 
      "function", 
      "stepwise evaluation", 
      "method", 
      "model", 
      "counterparts", 
      "work", 
      "implementation", 
      "process", 
      "correlation", 
      "effect", 
      "behavior", 
      "step", 
      "conditions", 
      "evaluation", 
      "knowledge", 
      "modern nanoscale semiconductor devices", 
      "quantum phase correlations", 
      "two-stage Wigner function model", 
      "coherent Wigner function", 
      "Monte Carlo device simulation methods", 
      "Carlo device simulation methods", 
      "Wigner-Boltzmann Correction Equation"
    ], 
    "name": "Stochastic Algorithm for Solving the Wigner-Boltzmann Correction Equation", 
    "pagination": "95-102", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032299361"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-18466-6_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-18466-6_10", 
      "https://app.dimensions.ai/details/publication/pub.1032299361"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_367.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-18466-6_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-18466-6_10'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      23 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-18466-6_10 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N2eed9c273b0f4456a73048ded7c91d5f
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description The quantum-kinetics of current carriers in modern nanoscale semiconductor devices is determined by the interplay between coherent phenomena and processes which destroy the quantum phase correlations. The carrier behavior has been recently described with a two-stage Wigner function model, where the phase-breaking effects are considered as a correction to the coherent counterpart. The correction function satisfies a Boltzmann-like equation.A stochastic method for solving the equation for the correction function is developed in this work, under the condition for an a-priori knowledge of the coherent Wigner function. The steps of an almost optimal algorithm for a stepwise evaluation of the correction function are presented. The algorithm conforms the well established Monte Carlo device simulation methods, and thus allows an easy implementation.
7 schema:editor N9e8fc10394cd4c8798d3cd1186ff4932
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na7c2b244cbf84210a7c661e932961882
12 schema:keywords Boltzmann-like equation
13 Carlo device simulation methods
14 Monte Carlo device simulation methods
15 Wigner function
16 Wigner function model
17 Wigner-Boltzmann Correction Equation
18 algorithm
19 behavior
20 carrier behavior
21 carriers
22 coherent Wigner function
23 coherent counterpart
24 coherent phenomena
25 conditions
26 correction
27 correction equation
28 correction function
29 correlation
30 counterparts
31 current carriers
32 device simulation method
33 devices
34 easy implementation
35 effect
36 equations
37 evaluation
38 function
39 function model
40 implementation
41 interplay
42 knowledge
43 method
44 model
45 modern nanoscale semiconductor devices
46 nanoscale semiconductor devices
47 optimal algorithm
48 phase correlation
49 phase-breaking effect
50 phenomenon
51 process
52 quantum phase correlations
53 semiconductor devices
54 simulation method
55 step
56 stepwise evaluation
57 stochastic algorithm
58 stochastic method
59 two-stage Wigner function model
60 wells
61 work
62 schema:name Stochastic Algorithm for Solving the Wigner-Boltzmann Correction Equation
63 schema:pagination 95-102
64 schema:productId N3ae0ab7a592d4579b849cfa247739431
65 Nf4129b2664c040fe93d1b98801364f12
66 schema:publisher Nb75e3119971f4ac9b3ce8f8a0dd5269a
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032299361
68 https://doi.org/10.1007/978-3-642-18466-6_10
69 schema:sdDatePublished 2021-12-01T20:07
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N88bc2856c42e46c7acd9707c93594d27
72 schema:url https://doi.org/10.1007/978-3-642-18466-6_10
73 sgo:license sg:explorer/license/
74 sgo:sdDataset chapters
75 rdf:type schema:Chapter
76 N246ddb8509a64679a82e1a7c735a273a schema:familyName Dimova
77 schema:givenName Stefka
78 rdf:type schema:Person
79 N2eed9c273b0f4456a73048ded7c91d5f rdf:first sg:person.011142023427.48
80 rdf:rest Nea7d45ed8c294278a2bbd3d849f4c456
81 N3ae0ab7a592d4579b849cfa247739431 schema:name doi
82 schema:value 10.1007/978-3-642-18466-6_10
83 rdf:type schema:PropertyValue
84 N71eb632b983c417da93f3cee971ab846 rdf:first N246ddb8509a64679a82e1a7c735a273a
85 rdf:rest N8c24c3e5b3e145848102100bef965ab5
86 N8860e51e2849413dade6d7cbcd244388 schema:familyName Dimov
87 schema:givenName Ivan
88 rdf:type schema:Person
89 N88bc2856c42e46c7acd9707c93594d27 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N8c24c3e5b3e145848102100bef965ab5 rdf:first Nd9bb8bbe863843538ed35de26b057c60
92 rdf:rest rdf:nil
93 N9e8fc10394cd4c8798d3cd1186ff4932 rdf:first N8860e51e2849413dade6d7cbcd244388
94 rdf:rest N71eb632b983c417da93f3cee971ab846
95 Na7c2b244cbf84210a7c661e932961882 schema:isbn 978-3-642-18465-9
96 978-3-642-18466-6
97 schema:name Numerical Methods and Applications
98 rdf:type schema:Book
99 Nb75e3119971f4ac9b3ce8f8a0dd5269a schema:name Springer Nature
100 rdf:type schema:Organisation
101 Nd9bb8bbe863843538ed35de26b057c60 schema:familyName Kolkovska
102 schema:givenName Natalia
103 rdf:type schema:Person
104 Nea7d45ed8c294278a2bbd3d849f4c456 rdf:first sg:person.013033344117.92
105 rdf:rest Nfa0273992fce49e9b0d824f3ed9b7c8f
106 Nf4129b2664c040fe93d1b98801364f12 schema:name dimensions_id
107 schema:value pub.1032299361
108 rdf:type schema:PropertyValue
109 Nfa0273992fce49e9b0d824f3ed9b7c8f rdf:first sg:person.013060500063.42
110 rdf:rest rdf:nil
111 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
112 schema:name Mathematical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
115 schema:name Statistics
116 rdf:type schema:DefinedTerm
117 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
118 schema:familyName Nedjalkov
119 schema:givenName M.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
121 rdf:type schema:Person
122 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
123 schema:familyName Selberherr
124 schema:givenName S.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
126 rdf:type schema:Person
127 sg:person.013060500063.42 schema:affiliation grid-institutes:grid.424859.6
128 schema:familyName Dimov
129 schema:givenName I.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013060500063.42
131 rdf:type schema:Person
132 grid-institutes:grid.424859.6 schema:alternateName Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G.Bontchev str Bl25A, 1113, Sofia, Bulgaria
133 schema:name Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G.Bontchev str Bl25A, 1113, Sofia, Bulgaria
134 rdf:type schema:Organization
135 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, A-1040, Vienna, Austria
136 schema:name Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, A-1040, Vienna, Austria
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...