XES, XESame, and ProM 6 View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011

AUTHORS

H. M. W. Verbeek , Joos C. A. M. Buijs , Boudewijn F. van Dongen , Wil M. P. van der Aalst

ABSTRACT

Process mining has emerged as a new way to analyze business processes based on event logs. These events logs need to be extracted from operational systems and can subsequently be used to discover or check the conformance of processes. ProM is a widely used tool for process mining. In earlier versions of ProM, MXML was used as an input format. In future releases of ProM, a new logging format will be used: the eXtensible Event Stream (XES) format. This format has several advantages over MXML. The paper presents two tools that use this format - XESame and ProM 6 - and highlights the main innovations and the role of XES. XESame enables domain experts to specify how the event log should be extracted from existing systems and converted to XES. ProM 6 is a completely new process mining framework based on XES and enabling innovative process mining functionality. More... »

PAGES

60-75

Book

TITLE

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

ISBN

978-3-642-17721-7
978-3-642-17722-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-17722-4_5

DOI

http://dx.doi.org/10.1007/978-3-642-17722-4_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035429329


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verbeek", 
        "givenName": "H. M. W.", 
        "id": "sg:person.016630174535.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016630174535.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buijs", 
        "givenName": "Joos C. A. M.", 
        "id": "sg:person.011471101665.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471101665.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Dongen", 
        "givenName": "Boudewijn F.", 
        "id": "sg:person.015723401221.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723401221.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Aalst", 
        "givenName": "Wil M. P.", 
        "id": "sg:person.014757056433.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757056433.19"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Process mining has emerged as a new way to analyze business processes based on event logs. These events logs need to be extracted from operational systems and can subsequently be used to discover or check the conformance of processes. ProM is a widely used tool for process mining. In earlier versions of ProM, MXML was used as an input format. In future releases of ProM, a new logging format will be used: the eXtensible Event Stream (XES) format. This format has several advantages over MXML. The paper presents two tools that use this format - XESame and ProM 6 - and highlights the main innovations and the role of XES. XESame enables domain experts to specify how the event log should be extracted from existing systems and converted to XES. ProM 6 is a completely new process mining framework based on XES and enabling innovative process mining functionality.", 
    "editor": [
      {
        "familyName": "Bayro-Corrochano", 
        "givenName": "Eduardo", 
        "type": "Person"
      }, 
      {
        "familyName": "Hancock", 
        "givenName": "Edwin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-17722-4_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-17721-7", 
        "978-3-642-17722-4"
      ], 
      "name": "Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "event logs", 
      "process mining", 
      "process mining framework", 
      "stream format", 
      "mining framework", 
      "business processes", 
      "input format", 
      "operational system", 
      "MXML", 
      "future releases", 
      "main innovation", 
      "mining", 
      "format", 
      "log", 
      "new way", 
      "earlier version", 
      "conformance", 
      "tool", 
      "system", 
      "functionality", 
      "framework", 
      "experts", 
      "version", 
      "advantages", 
      "process", 
      "way", 
      "PROM", 
      "innovation", 
      "XES", 
      "role", 
      "release", 
      "paper", 
      "conformance of processes", 
      "eXtensible Event Stream (XES) format", 
      "Event Stream (XES) format", 
      "format - XESame", 
      "ProM 6", 
      "role of XES", 
      "XESame", 
      "new process mining framework", 
      "innovative process mining functionality", 
      "process mining functionality", 
      "mining functionality"
    ], 
    "name": "XES, XESame, and ProM 6", 
    "pagination": "60-75", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035429329"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-17722-4_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-17722-4_5", 
      "https://app.dimensions.ai/details/publication/pub.1035429329"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_322.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-17722-4_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17722-4_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17722-4_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17722-4_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17722-4_5'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-17722-4_5 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N3c121601109b49068cfc08787b76070a
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description Process mining has emerged as a new way to analyze business processes based on event logs. These events logs need to be extracted from operational systems and can subsequently be used to discover or check the conformance of processes. ProM is a widely used tool for process mining. In earlier versions of ProM, MXML was used as an input format. In future releases of ProM, a new logging format will be used: the eXtensible Event Stream (XES) format. This format has several advantages over MXML. The paper presents two tools that use this format - XESame and ProM 6 - and highlights the main innovations and the role of XES. XESame enables domain experts to specify how the event log should be extracted from existing systems and converted to XES. ProM 6 is a completely new process mining framework based on XES and enabling innovative process mining functionality.
7 schema:editor N1063d8fd1da2409c8d21c6c808441f7d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nfd818dc5663140c98a1148baee822998
12 schema:keywords Event Stream (XES) format
13 MXML
14 PROM
15 ProM 6
16 XES
17 XESame
18 advantages
19 business processes
20 conformance
21 conformance of processes
22 eXtensible Event Stream (XES) format
23 earlier version
24 event logs
25 experts
26 format
27 format - XESame
28 framework
29 functionality
30 future releases
31 innovation
32 innovative process mining functionality
33 input format
34 log
35 main innovation
36 mining
37 mining framework
38 mining functionality
39 new process mining framework
40 new way
41 operational system
42 paper
43 process
44 process mining
45 process mining framework
46 process mining functionality
47 release
48 role
49 role of XES
50 stream format
51 system
52 tool
53 version
54 way
55 schema:name XES, XESame, and ProM 6
56 schema:pagination 60-75
57 schema:productId N367f81e08d6a49a6956c86baa758db84
58 Nc6c461d642314a8ba2bcd927985d6f4d
59 schema:publisher N74c7cab551624d12a48f0bbf1af1e3c2
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035429329
61 https://doi.org/10.1007/978-3-642-17722-4_5
62 schema:sdDatePublished 2021-12-01T20:05
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nfd9879adc9be42e4853994a69990e318
65 schema:url https://doi.org/10.1007/978-3-642-17722-4_5
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N1063d8fd1da2409c8d21c6c808441f7d rdf:first N48ced145bef14ae295d135e6137270cd
70 rdf:rest N70ca13da85c243f7a3cac32ee78d965c
71 N367f81e08d6a49a6956c86baa758db84 schema:name dimensions_id
72 schema:value pub.1035429329
73 rdf:type schema:PropertyValue
74 N3b3622e0eb984d228a48d31c7fcded3a rdf:first sg:person.014757056433.19
75 rdf:rest rdf:nil
76 N3c121601109b49068cfc08787b76070a rdf:first sg:person.016630174535.10
77 rdf:rest Neecddf8c197d400296b65a6e6c19d8db
78 N48ced145bef14ae295d135e6137270cd schema:familyName Bayro-Corrochano
79 schema:givenName Eduardo
80 rdf:type schema:Person
81 N670f01a5081249b1bf2c7699d4bbb06c rdf:first sg:person.015723401221.54
82 rdf:rest N3b3622e0eb984d228a48d31c7fcded3a
83 N6fb8b11cd0794f5a973f7dc1c7f2e6d0 schema:familyName Hancock
84 schema:givenName Edwin
85 rdf:type schema:Person
86 N70ca13da85c243f7a3cac32ee78d965c rdf:first N6fb8b11cd0794f5a973f7dc1c7f2e6d0
87 rdf:rest rdf:nil
88 N74c7cab551624d12a48f0bbf1af1e3c2 schema:name Springer Nature
89 rdf:type schema:Organisation
90 Nc6c461d642314a8ba2bcd927985d6f4d schema:name doi
91 schema:value 10.1007/978-3-642-17722-4_5
92 rdf:type schema:PropertyValue
93 Neecddf8c197d400296b65a6e6c19d8db rdf:first sg:person.011471101665.28
94 rdf:rest N670f01a5081249b1bf2c7699d4bbb06c
95 Nfd818dc5663140c98a1148baee822998 schema:isbn 978-3-642-17721-7
96 978-3-642-17722-4
97 schema:name Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
98 rdf:type schema:Book
99 Nfd9879adc9be42e4853994a69990e318 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information Systems
106 rdf:type schema:DefinedTerm
107 sg:person.011471101665.28 schema:affiliation grid-institutes:grid.6852.9
108 schema:familyName Buijs
109 schema:givenName Joos C. A. M.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471101665.28
111 rdf:type schema:Person
112 sg:person.014757056433.19 schema:affiliation grid-institutes:grid.6852.9
113 schema:familyName van der Aalst
114 schema:givenName Wil M. P.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757056433.19
116 rdf:type schema:Person
117 sg:person.015723401221.54 schema:affiliation grid-institutes:grid.6852.9
118 schema:familyName van Dongen
119 schema:givenName Boudewijn F.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723401221.54
121 rdf:type schema:Person
122 sg:person.016630174535.10 schema:affiliation grid-institutes:grid.6852.9
123 schema:familyName Verbeek
124 schema:givenName H. M. W.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016630174535.10
126 rdf:type schema:Person
127 grid-institutes:grid.6852.9 schema:alternateName Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
128 schema:name Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...