Ontology type: schema:Chapter
2010
AUTHORSPiotr Berman , Marek Karpinski , Alexander Zelikovsky
ABSTRACTGiven a graph with edge lengths and a set of pairs of vertices which should be connected (requirements) the Generalized Steiner Tree Problem (GSTP) asks for a minimum length subgraph that connects every requirement. For the Generalized Steiner Tree Problem restricted to complete graphs with edge lengths 1 and 2, we provide a 1.5-approximation algorithm. It is the first algorithm with the approximation ratio significantly better than 2 for a class of graphs for which GSTP is MAX SNP-hard. More... »
PAGES15-24
Algorithms and Computation
ISBN
978-3-642-17516-9
978-3-642-17517-6
http://scigraph.springernature.com/pub.10.1007/978-3-642-17517-6_4
DOIhttp://dx.doi.org/10.1007/978-3-642-17517-6_4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1010857272
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA",
"id": "http://www.grid.ac/institutes/grid.29857.31",
"name": [
"Department of Computer Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA"
],
"type": "Organization"
},
"familyName": "Berman",
"givenName": "Piotr",
"id": "sg:person.01274506210.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274506210.27"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, University of Bonn, 53117, Bonn, Germany",
"id": "http://www.grid.ac/institutes/grid.10388.32",
"name": [
"Department of Computer Science, University of Bonn, 53117, Bonn, Germany"
],
"type": "Organization"
},
"familyName": "Karpinski",
"givenName": "Marek",
"id": "sg:person.011636042271.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011636042271.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, Georgia State University, 30303, Atlanta, GA, USA",
"id": "http://www.grid.ac/institutes/grid.256304.6",
"name": [
"Department of Computer Science, Georgia State University, 30303, Atlanta, GA, USA"
],
"type": "Organization"
},
"familyName": "Zelikovsky",
"givenName": "Alexander",
"id": "sg:person.01121041073.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121041073.51"
],
"type": "Person"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "Given a graph with edge lengths and a set of pairs of vertices which should be connected (requirements) the Generalized Steiner Tree Problem (GSTP) asks for a minimum length subgraph that connects every requirement. For the Generalized Steiner Tree Problem restricted to complete graphs with edge lengths 1 and 2, we provide a 1.5-approximation algorithm. It is the first algorithm with the approximation ratio significantly better than 2 for a class of graphs for which GSTP is MAX SNP-hard.",
"editor": [
{
"familyName": "Cheong",
"givenName": "Otfried",
"type": "Person"
},
{
"familyName": "Chwa",
"givenName": "Kyung-Yong",
"type": "Person"
},
{
"familyName": "Park",
"givenName": "Kunsoo",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-17517-6_4",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-17516-9",
"978-3-642-17517-6"
],
"name": "Algorithms and Computation",
"type": "Book"
},
"keywords": [
"generalized Steiner tree problem",
"Steiner tree problem",
"class of graphs",
"tree problem",
"complete graph",
"approximation ratio",
"set of pairs",
"first algorithm",
"graph",
"MAX SNP",
"length 1",
"Steiner tree",
"edge length",
"algorithm",
"problem",
"vertices",
"subgraphs",
"class",
"set",
"pairs",
"length",
"requirements",
"trees",
"ratio",
"SNPs"
],
"name": "A 3/2-Approximation Algorithm for Generalized Steiner Trees in Complete Graphs with Edge Lengths 1 and 2",
"pagination": "15-24",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1010857272"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-17517-6_4"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-17517-6_4",
"https://app.dimensions.ai/details/publication/pub.1010857272"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-08-04T17:20",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_392.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-17517-6_4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17517-6_4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17517-6_4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17517-6_4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17517-6_4'
This table displays all metadata directly associated to this object as RDF triples.
114 TRIPLES
22 PREDICATES
50 URIs
43 LITERALS
7 BLANK NODES