A Simpler and More Efficient Algorithm for the Next-to-Shortest Path Problem View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Bang Ye Wu

ABSTRACT

Given an undirected graph G = (V,E) with positive edge weights and two vertices s and t, the next-to-shortest path problem is to find an st-path which length is minimum among all st-paths of lengths strictly larger than the shortest path length. In this paper we give an O(|V|log|V| + |E|) time algorithm for this problem, which improves the previous result of O(|V|2) time for sparse graphs. More... »

PAGES

219-227

Book

TITLE

Combinatorial Optimization and Applications

ISBN

978-3-642-17460-5
978-3-642-17461-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-17461-2_18

DOI

http://dx.doi.org/10.1007/978-3-642-17461-2_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047601170


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Chung Cheng University, 621, ChiaYi, Taiwan R.O.C.", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "National Chung Cheng University, 621, ChiaYi, Taiwan R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Bang Ye", 
        "id": "sg:person.013045767237.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045767237.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Given an undirected graph G\u2009=\u2009(V,E) with positive edge weights and two vertices s and t, the next-to-shortest path problem is to find an st-path which length is minimum among all st-paths of lengths strictly larger than the shortest path length. In this paper we give an O(|V|log|V|\u2009+\u2009|E|) time algorithm for this problem, which improves the previous result of O(|V|2) time for sparse graphs.", 
    "editor": [
      {
        "familyName": "Wu", 
        "givenName": "Weili", 
        "type": "Person"
      }, 
      {
        "familyName": "Daescu", 
        "givenName": "Ovidiu", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-17461-2_18", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-17460-5", 
        "978-3-642-17461-2"
      ], 
      "name": "Combinatorial Optimization and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "weight", 
      "length", 
      "shortest path length", 
      "previous results", 
      "results", 
      "time", 
      "problem", 
      "path length", 
      "Next", 
      "paper", 
      "algorithm", 
      "graph G", 
      "graph", 
      "undirected graph G", 
      "positive edge weights", 
      "edge weights", 
      "vertices s", 
      "shortest path problem", 
      "path problem", 
      "time algorithm", 
      "sparse graphs", 
      "efficient algorithm", 
      "Shortest Path Problem"
    ], 
    "name": "A Simpler and More Efficient Algorithm for the Next-to-Shortest Path Problem", 
    "pagination": "219-227", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047601170"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-17461-2_18"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-17461-2_18", 
      "https://app.dimensions.ai/details/publication/pub.1047601170"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_381.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-17461-2_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17461-2_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17461-2_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17461-2_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17461-2_18'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      23 PREDICATES      49 URIs      42 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-17461-2_18 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N8142a7638022420cb93d9976691bb1e2
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description Given an undirected graph G = (V,E) with positive edge weights and two vertices s and t, the next-to-shortest path problem is to find an st-path which length is minimum among all st-paths of lengths strictly larger than the shortest path length. In this paper we give an O(|V|log|V| + |E|) time algorithm for this problem, which improves the previous result of O(|V|2) time for sparse graphs.
7 schema:editor N35ec430a40f340c5828765094b0dcdfa
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1c450f4f1ff2497492f631b745a85c89
12 schema:keywords Next
13 Shortest Path Problem
14 algorithm
15 edge weights
16 efficient algorithm
17 graph
18 graph G
19 length
20 paper
21 path length
22 path problem
23 positive edge weights
24 previous results
25 problem
26 results
27 shortest path length
28 shortest path problem
29 sparse graphs
30 time
31 time algorithm
32 undirected graph G
33 vertices s
34 weight
35 schema:name A Simpler and More Efficient Algorithm for the Next-to-Shortest Path Problem
36 schema:pagination 219-227
37 schema:productId N0cf1dbf5395d4cf49733083a6da90ad4
38 Ne4955ff35c5f4bb6b3c8cf7cf61bf93c
39 schema:publisher Nf2349b50991449bda3141acd80d28a84
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047601170
41 https://doi.org/10.1007/978-3-642-17461-2_18
42 schema:sdDatePublished 2021-12-01T20:08
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nf2f1bd338d224015b1cab4c84207ac64
45 schema:url https://doi.org/10.1007/978-3-642-17461-2_18
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N0cf1dbf5395d4cf49733083a6da90ad4 schema:name doi
50 schema:value 10.1007/978-3-642-17461-2_18
51 rdf:type schema:PropertyValue
52 N1790377be7f343099e4ce10e93cb6609 rdf:first Nc832646fa5ff4891a85363e43e7e55cc
53 rdf:rest rdf:nil
54 N1c450f4f1ff2497492f631b745a85c89 schema:isbn 978-3-642-17460-5
55 978-3-642-17461-2
56 schema:name Combinatorial Optimization and Applications
57 rdf:type schema:Book
58 N35ec430a40f340c5828765094b0dcdfa rdf:first Na43be1e3e2b5433ab0e23964f8ecbea1
59 rdf:rest N1790377be7f343099e4ce10e93cb6609
60 N8142a7638022420cb93d9976691bb1e2 rdf:first sg:person.013045767237.23
61 rdf:rest rdf:nil
62 Na43be1e3e2b5433ab0e23964f8ecbea1 schema:familyName Wu
63 schema:givenName Weili
64 rdf:type schema:Person
65 Nc832646fa5ff4891a85363e43e7e55cc schema:familyName Daescu
66 schema:givenName Ovidiu
67 rdf:type schema:Person
68 Ne4955ff35c5f4bb6b3c8cf7cf61bf93c schema:name dimensions_id
69 schema:value pub.1047601170
70 rdf:type schema:PropertyValue
71 Nf2349b50991449bda3141acd80d28a84 schema:name Springer Nature
72 rdf:type schema:Organisation
73 Nf2f1bd338d224015b1cab4c84207ac64 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
79 schema:name Computation Theory and Mathematics
80 rdf:type schema:DefinedTerm
81 sg:person.013045767237.23 schema:affiliation grid-institutes:None
82 schema:familyName Wu
83 schema:givenName Bang Ye
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045767237.23
85 rdf:type schema:Person
86 grid-institutes:None schema:alternateName National Chung Cheng University, 621, ChiaYi, Taiwan R.O.C.
87 schema:name National Chung Cheng University, 621, ChiaYi, Taiwan R.O.C.
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...