Gene Regulatory Network Identification from Gene Expression Time Series Data Using Swarm Intelligence View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Debasish Datta , Amit Konar , Swagatam Das , B. K. Panigrahi

ABSTRACT

A Gene Regulatory Network (GRN) usually is modelled as a directed graph, where the nodes represent genes and the directed arc from a given node i to node j represents the causal influence of gene i over gene j. The causal influence represented by an arc is enumerated by a signed weight associated with that arc. In this article, we model GRN by a recurrent fuzzy neural network, and attempt to identify the signed weights from the time response data of the gene micro-array. A cost function has been constructed to describe the weight identification as an optimization problem, and Particle Swarm Optimization algorithm has been used to optimize the cost function. The fuzzy membership distribution used to model network weights enhances search efficiency and hence computational overhead in the identification problem. Because of the nonlinearity in causal relationship between genes, there exist multiple solutions to the weight identification problem of GRN. In order to cater for the theoretical best solution, the identification problem has been decoupled into two sub-problems: i) determination of the existence/non-existence about the causal influence, and ii) determination of the sign and magnitude of the influence between any two genes of the network. The solutions obtained from these two sub-problems are then combined to accurately identify the both non-existing connections, and the sign and magnitude of weights to existing connections. Computer simulation reveals that the proposed realization outperforms the most recently reported work in this field in detecting the sign and magnitude and also the structure of the overall network. More... »

PAGES

517-542

Book

TITLE

Handbook of Swarm Intelligence

ISBN

978-3-642-17389-9
978-3-642-17390-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-17390-5_23

DOI

http://dx.doi.org/10.1007/978-3-642-17390-5_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016343246


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, WB, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Datta", 
        "givenName": "Debasish", 
        "id": "sg:person.07636065270.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07636065270.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, WB, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konar", 
        "givenName": "Amit", 
        "id": "sg:person.01337053064.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, WB, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "Swagatam", 
        "id": "sg:person.016223153451.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016223153451.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Delhi", 
          "id": "https://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Department of Electrical Engineering, IIT Delhi, 110016, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panigrahi", 
        "givenName": "B. K.", 
        "id": "sg:person.016221045450.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016221045450.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/12.427994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001201655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0966-842x(99)01540-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003004677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/261459a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007363669", 
          "https://doi.org/10.1038/261459a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/261459a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007363669", 
          "https://doi.org/10.1038/261459a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-s6-s9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009397998", 
          "https://doi.org/10.1186/1471-2105-8-s6-s9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cplx.6130010612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010015136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.9.12.3273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014767256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015944320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/323533a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018367015", 
          "https://doi.org/10.1038/323533a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023204754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-0678-1_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028925803", 
          "https://doi.org/10.1007/978-94-010-0678-1_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-0678-1_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028925803", 
          "https://doi.org/10.1007/978-94-010-0678-1_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fj.00-0361com", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031959308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038009562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0303-2647(99)00090-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040879094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2007.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045795503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051076828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jpdc.2001.1807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054491397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(1999)125:2(123)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057583491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652701752236223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.797969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.58337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.737492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/81.841922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061237092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mci.2008.913368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061392329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2007.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061540545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2007.1058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061540546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2008.917202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmca.2004.838454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061795021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijbra.2009.026418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067439351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2004.1403826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077363758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.1997.637339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093293147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2009.4983307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093671504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnc.2007.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094852357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mhs.1995.494215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095205003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812799623_0017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096079227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814447300_0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096090562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652700750050961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111238199"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "A Gene Regulatory Network (GRN) usually is modelled as a directed graph, where the nodes represent genes and the directed arc from a given node i to node j represents the causal influence of gene i over gene j. The causal influence represented by an arc is enumerated by a signed weight associated with that arc. In this article, we model GRN by a recurrent fuzzy neural network, and attempt to identify the signed weights from the time response data of the gene micro-array. A cost function has been constructed to describe the weight identification as an optimization problem, and Particle Swarm Optimization algorithm has been used to optimize the cost function. The fuzzy membership distribution used to model network weights enhances search efficiency and hence computational overhead in the identification problem. Because of the nonlinearity in causal relationship between genes, there exist multiple solutions to the weight identification problem of GRN. In order to cater for the theoretical best solution, the identification problem has been decoupled into two sub-problems: i) determination of the existence/non-existence about the causal influence, and ii) determination of the sign and magnitude of the influence between any two genes of the network. The solutions obtained from these two sub-problems are then combined to accurately identify the both non-existing connections, and the sign and magnitude of weights to existing connections. Computer simulation reveals that the proposed realization outperforms the most recently reported work in this field in detecting the sign and magnitude and also the structure of the overall network.", 
    "editor": [
      {
        "familyName": "Panigrahi", 
        "givenName": "Bijaya Ketan", 
        "type": "Person"
      }, 
      {
        "familyName": "Shi", 
        "givenName": "Yuhui", 
        "type": "Person"
      }, 
      {
        "familyName": "Lim", 
        "givenName": "Meng-Hiot", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-17390-5_23", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-17389-9", 
        "978-3-642-17390-5"
      ], 
      "name": "Handbook of Swarm Intelligence", 
      "type": "Book"
    }, 
    "name": "Gene Regulatory Network Identification from Gene Expression Time Series Data Using Swarm Intelligence", 
    "pagination": "517-542", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016343246"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-17390-5_23"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4ddee662abb3a464d9f599b579efd4327254acd5083e50c5e5e12bb6251b6b99"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-17390-5_23", 
      "https://app.dimensions.ai/details/publication/pub.1016343246"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71701_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-17390-5_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17390-5_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17390-5_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17390-5_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17390-5_23'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      23 PREDICATES      64 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-17390-5_23 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd6af279dbd864178a6a6650210432fe0
4 schema:citation sg:pub.10.1007/978-94-010-0678-1_2
5 sg:pub.10.1023/a:1008202821328
6 sg:pub.10.1038/261459a0
7 sg:pub.10.1038/323533a0
8 sg:pub.10.1186/1471-2105-8-s6-s9
9 https://doi.org/10.1002/cplx.6130010612
10 https://doi.org/10.1006/jpdc.2001.1807
11 https://doi.org/10.1016/j.cor.2005.01.024
12 https://doi.org/10.1016/j.neunet.2007.07.002
13 https://doi.org/10.1016/s0303-2647(99)00090-8
14 https://doi.org/10.1016/s0966-842x(99)01540-1
15 https://doi.org/10.1061/(asce)0733-9399(1999)125:2(123)
16 https://doi.org/10.1089/106652700750050961
17 https://doi.org/10.1089/106652701752236223
18 https://doi.org/10.1091/mbc.9.12.3273
19 https://doi.org/10.1093/bioinformatics/btg1071
20 https://doi.org/10.1093/bioinformatics/btg313
21 https://doi.org/10.1093/bioinformatics/bth283
22 https://doi.org/10.1096/fj.00-0361com
23 https://doi.org/10.1109/4235.797969
24 https://doi.org/10.1109/5.58337
25 https://doi.org/10.1109/72.737492
26 https://doi.org/10.1109/81.841922
27 https://doi.org/10.1109/cec.2009.4983307
28 https://doi.org/10.1109/icnc.2007.90
29 https://doi.org/10.1109/icsmc.1997.637339
30 https://doi.org/10.1109/iembs.2004.1403826
31 https://doi.org/10.1109/mci.2008.913368
32 https://doi.org/10.1109/mhs.1995.494215
33 https://doi.org/10.1109/tcbb.2007.1057
34 https://doi.org/10.1109/tcbb.2007.1058
35 https://doi.org/10.1109/tevc.2008.917202
36 https://doi.org/10.1109/tsmca.2004.838454
37 https://doi.org/10.1117/12.427994
38 https://doi.org/10.1142/9789812799623_0017
39 https://doi.org/10.1142/9789814447300_0003
40 https://doi.org/10.1504/ijbra.2009.026418
41 schema:datePublished 2011
42 schema:datePublishedReg 2011-01-01
43 schema:description A Gene Regulatory Network (GRN) usually is modelled as a directed graph, where the nodes represent genes and the directed arc from a given node i to node j represents the causal influence of gene i over gene j. The causal influence represented by an arc is enumerated by a signed weight associated with that arc. In this article, we model GRN by a recurrent fuzzy neural network, and attempt to identify the signed weights from the time response data of the gene micro-array. A cost function has been constructed to describe the weight identification as an optimization problem, and Particle Swarm Optimization algorithm has been used to optimize the cost function. The fuzzy membership distribution used to model network weights enhances search efficiency and hence computational overhead in the identification problem. Because of the nonlinearity in causal relationship between genes, there exist multiple solutions to the weight identification problem of GRN. In order to cater for the theoretical best solution, the identification problem has been decoupled into two sub-problems: i) determination of the existence/non-existence about the causal influence, and ii) determination of the sign and magnitude of the influence between any two genes of the network. The solutions obtained from these two sub-problems are then combined to accurately identify the both non-existing connections, and the sign and magnitude of weights to existing connections. Computer simulation reveals that the proposed realization outperforms the most recently reported work in this field in detecting the sign and magnitude and also the structure of the overall network.
44 schema:editor Nc56d866d41b4474390dea8ab3998ed08
45 schema:genre chapter
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N7e4ffa2c318844b49d8917597197c064
49 schema:name Gene Regulatory Network Identification from Gene Expression Time Series Data Using Swarm Intelligence
50 schema:pagination 517-542
51 schema:productId N03db7f18337a485e88ace2caa25f03b4
52 N4a2354b0ea9c4d848963f65cd86f1585
53 Nb31176844dc045a4bdd1f51f3284179f
54 schema:publisher N14300cdfea4745cc87e54ca8f32f05da
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016343246
56 https://doi.org/10.1007/978-3-642-17390-5_23
57 schema:sdDatePublished 2019-04-16T08:38
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N0031ad398c1243c9a00e03adce6916c0
60 schema:url https://link.springer.com/10.1007%2F978-3-642-17390-5_23
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N0031ad398c1243c9a00e03adce6916c0 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N03db7f18337a485e88ace2caa25f03b4 schema:name readcube_id
67 schema:value 4ddee662abb3a464d9f599b579efd4327254acd5083e50c5e5e12bb6251b6b99
68 rdf:type schema:PropertyValue
69 N06503a591c0e4267a7b3657b2859b0eb rdf:first Nf38e00f3a1844b03a5c0aa4619a501d7
70 rdf:rest Nd8c3aaa0f5b340cb87b2e46c0a311f3a
71 N14300cdfea4745cc87e54ca8f32f05da schema:location Berlin, Heidelberg
72 schema:name Springer Berlin Heidelberg
73 rdf:type schema:Organisation
74 N44397e3d106b493eaf498e2b7491b5d1 rdf:first sg:person.016221045450.92
75 rdf:rest rdf:nil
76 N4a2354b0ea9c4d848963f65cd86f1585 schema:name doi
77 schema:value 10.1007/978-3-642-17390-5_23
78 rdf:type schema:PropertyValue
79 N752c9d9bb45549a9b681101d000ad736 schema:familyName Lim
80 schema:givenName Meng-Hiot
81 rdf:type schema:Person
82 N7e4ffa2c318844b49d8917597197c064 schema:isbn 978-3-642-17389-9
83 978-3-642-17390-5
84 schema:name Handbook of Swarm Intelligence
85 rdf:type schema:Book
86 N9d42ecbeebbc4e5d91684ed286c5974f rdf:first sg:person.016223153451.44
87 rdf:rest N44397e3d106b493eaf498e2b7491b5d1
88 Na9f2ac136ee246cc86fb2bc86c6c4813 rdf:first sg:person.01337053064.29
89 rdf:rest N9d42ecbeebbc4e5d91684ed286c5974f
90 Nb31176844dc045a4bdd1f51f3284179f schema:name dimensions_id
91 schema:value pub.1016343246
92 rdf:type schema:PropertyValue
93 Nc56d866d41b4474390dea8ab3998ed08 rdf:first Ne7d999145409451fa004a16b49d67804
94 rdf:rest N06503a591c0e4267a7b3657b2859b0eb
95 Nd6af279dbd864178a6a6650210432fe0 rdf:first sg:person.07636065270.09
96 rdf:rest Na9f2ac136ee246cc86fb2bc86c6c4813
97 Nd8c3aaa0f5b340cb87b2e46c0a311f3a rdf:first N752c9d9bb45549a9b681101d000ad736
98 rdf:rest rdf:nil
99 Ne7d999145409451fa004a16b49d67804 schema:familyName Panigrahi
100 schema:givenName Bijaya Ketan
101 rdf:type schema:Person
102 Nf38e00f3a1844b03a5c0aa4619a501d7 schema:familyName Shi
103 schema:givenName Yuhui
104 rdf:type schema:Person
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
109 schema:name Artificial Intelligence and Image Processing
110 rdf:type schema:DefinedTerm
111 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
112 schema:familyName Konar
113 schema:givenName Amit
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
115 rdf:type schema:Person
116 sg:person.016221045450.92 schema:affiliation https://www.grid.ac/institutes/grid.417967.a
117 schema:familyName Panigrahi
118 schema:givenName B. K.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016221045450.92
120 rdf:type schema:Person
121 sg:person.016223153451.44 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
122 schema:familyName Das
123 schema:givenName Swagatam
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016223153451.44
125 rdf:type schema:Person
126 sg:person.07636065270.09 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
127 schema:familyName Datta
128 schema:givenName Debasish
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07636065270.09
130 rdf:type schema:Person
131 sg:pub.10.1007/978-94-010-0678-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028925803
132 https://doi.org/10.1007/978-94-010-0678-1_2
133 rdf:type schema:CreativeWork
134 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
135 https://doi.org/10.1023/a:1008202821328
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/261459a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007363669
138 https://doi.org/10.1038/261459a0
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/323533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018367015
141 https://doi.org/10.1038/323533a0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/1471-2105-8-s6-s9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009397998
144 https://doi.org/10.1186/1471-2105-8-s6-s9
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/cplx.6130010612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010015136
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1006/jpdc.2001.1807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054491397
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.cor.2005.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023204754
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.neunet.2007.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045795503
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0303-2647(99)00090-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040879094
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0966-842x(99)01540-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003004677
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1061/(asce)0733-9399(1999)125:2(123) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057583491
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1089/106652700750050961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111238199
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1089/106652701752236223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204900
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1091/mbc.9.12.3273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014767256
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/bioinformatics/btg1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015944320
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/bioinformatics/btg313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051076828
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/bioinformatics/bth283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038009562
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1096/fj.00-0361com schema:sameAs https://app.dimensions.ai/details/publication/pub.1031959308
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/4235.797969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172031
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/5.58337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179726
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/72.737492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219134
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/81.841922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061237092
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/cec.2009.4983307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093671504
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/icnc.2007.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094852357
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/icsmc.1997.637339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093293147
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/iembs.2004.1403826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077363758
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/mci.2008.913368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061392329
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/mhs.1995.494215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095205003
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/tcbb.2007.1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540545
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1109/tcbb.2007.1058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540546
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1109/tevc.2008.917202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604871
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/tsmca.2004.838454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061795021
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1117/12.427994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001201655
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1142/9789812799623_0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096079227
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1142/9789814447300_0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096090562
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1504/ijbra.2009.026418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067439351
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
211 schema:name Department of Electronics and Telecommunication Engineering, Jadavpur University, WB, India
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.417967.a schema:alternateName Indian Institute of Technology Delhi
214 schema:name Department of Electrical Engineering, IIT Delhi, 110016, India
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...