Positrons from pulsar winds View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Pasquale Blasi , Elena Amato

ABSTRACT

Pulsars, or more generally rotation powered neutron stars, are excellent factories of antimatter in the Galaxy, in the form of pairs of electrons and positrons. Electrons are initially extracted from the surface of the star by the intense rotation induced electric fields and later transformed into electron-positron pairs through electromagnetic cascading. Observations of Pulsar Wind Nebulae (PWNe) show that cascades in the pulsar magnetosphere must ensure pair multiplicities of order 104 -105. These pairs finally end up as part of the relativistic magnetized wind emanating from the pulsar. The wind is slowed down, from its highly relativistic bulk motion, at a termination shock, which represents the reverse shock due to its interaction with the surrounding ejecta of the progenitor supernova. At the (relativistic) termination shock, acceleration of the pairs occurs, as part of the dissipation process, so that the cold wind is transformed into a plasma of relativistic non-thermal particles, plus a potential thermal component, which however has never been observed. As long as the pulsar wind is embedded in the supernova remnant these pairs are forced to escavate a bubble and lose energy adiabatically (because of the expansion) and radiatively (because of magnetic and radiation fields).We discuss here the observational constraints on the energy and number content of such pairs and discuss the scenarios that may allow for the pairs to escape in the interstellar medium and possibly contribute to the positron excess that has recently been detected by the PAMELA satellite. Special attention is dedicated to the case of nebulae surrounding high speed pulsars, observationally classified as Pulsar Bow Shock Nebulae. The pairs produced in these objects may be effectively carried out of the Supernova Remnant and released in the Interstellar Medium. As a result, Bow Shock Pulsar Wind Nebulae might be the main contributors to the positron excess in the Galaxy. More... »

PAGES

623-641

References to SciGraph publications

  • 1996-06. Very low braking index for the Vela pulsar in NATURE
  • 2009. Pulsar Emission: Where to Go in NEUTRON STARS AND PULSARS
  • Book

    TITLE

    High-Energy Emission from Pulsars and their Systems

    ISBN

    978-3-642-17250-2
    978-3-642-17251-9

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-17251-9_50

    DOI

    http://dx.doi.org/10.1007/978-3-642-17251-9_50

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006379912


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "INAF/Arcetri Astrophysical Observatory, Firenze, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blasi", 
            "givenName": "Pasquale", 
            "id": "sg:person.010233230732.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010233230732.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "INAF/Arcetri Astrophysical Observatory, Firenze, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amato", 
            "givenName": "Elena", 
            "id": "sg:person.012430376041.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012430376041.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/0004-637x/698/2/1523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000214673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0004-637x/698/2/1523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000214673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/426731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010974732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.111302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013648634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.111302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013648634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asr.2005.03.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016996676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.astro.44.051905.092528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017997855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.astropartphys.2010.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022585315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/381497a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029158661", 
              "https://doi.org/10.1038/381497a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/508050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032362529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0004-637x/712/1/596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034915226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0004-637x/712/1/596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034915226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-76965-1_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035978098", 
              "https://doi.org/10.1007/978-3-540-76965-1_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-76965-1_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035978098", 
              "https://doi.org/10.1007/978-3-540-76965-1_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/424906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048465654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.73.1031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049793145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.73.1031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049793145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/338805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050073621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/318354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050283004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/589640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052105330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2966.2004.07597.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053430046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/0004-6361:20030624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056930741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/0004-6361:20035936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056932650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/0004-6361:20042205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056934228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/0004-6361:20064858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056936687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/0004-6361:200809424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056940144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/168340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058499630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/171296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058502586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/491643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058776281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/491643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058776281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/522005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058793397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0067-0049/187/2/460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059033944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0067-0049/187/2/460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059033944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1164718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062458928"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011", 
        "datePublishedReg": "2011-01-01", 
        "description": "Pulsars, or more generally rotation powered neutron stars, are excellent factories of antimatter in the Galaxy, in the form of pairs of electrons and positrons. Electrons are initially extracted from the surface of the star by the intense rotation induced electric fields and later transformed into electron-positron pairs through electromagnetic cascading. Observations of Pulsar Wind Nebulae (PWNe) show that cascades in the pulsar magnetosphere must ensure pair multiplicities of order 104 -105. These pairs finally end up as part of the relativistic magnetized wind emanating from the pulsar. The wind is slowed down, from its highly relativistic bulk motion, at a termination shock, which represents the reverse shock due to its interaction with the surrounding ejecta of the progenitor supernova. At the (relativistic) termination shock, acceleration of the pairs occurs, as part of the dissipation process, so that the cold wind is transformed into a plasma of relativistic non-thermal particles, plus a potential thermal component, which however has never been observed. As long as the pulsar wind is embedded in the supernova remnant these pairs are forced to escavate a bubble and lose energy adiabatically (because of the expansion) and radiatively (because of magnetic and radiation fields).We discuss here the observational constraints on the energy and number content of such pairs and discuss the scenarios that may allow for the pairs to escape in the interstellar medium and possibly contribute to the positron excess that has recently been detected by the PAMELA satellite. Special attention is dedicated to the case of nebulae surrounding high speed pulsars, observationally classified as Pulsar Bow Shock Nebulae. The pairs produced in these objects may be effectively carried out of the Supernova Remnant and released in the Interstellar Medium. As a result, Bow Shock Pulsar Wind Nebulae might be the main contributors to the positron excess in the Galaxy.", 
        "editor": [
          {
            "familyName": "Torres", 
            "givenName": "Diego F.", 
            "type": "Person"
          }, 
          {
            "familyName": "Rea", 
            "givenName": "Nanda", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-17251-9_50", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-17250-2", 
            "978-3-642-17251-9"
          ], 
          "name": "High-Energy Emission from Pulsars and their Systems", 
          "type": "Book"
        }, 
        "name": "Positrons from pulsar winds", 
        "pagination": "623-641", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-17251-9_50"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1e63a3de2ccf35c5632ee4ea3dde0bc58411e437e2cd72d4208f97e615b06d63"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006379912"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-17251-9_50", 
          "https://app.dimensions.ai/details/publication/pub.1006379912"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T11:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000247.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-17251-9_50"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17251-9_50'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17251-9_50'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17251-9_50'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17251-9_50'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      23 PREDICATES      54 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-17251-9_50 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author N5a21af52c9224e9da48efee866d08a61
    4 schema:citation sg:pub.10.1007/978-3-540-76965-1_15
    5 sg:pub.10.1038/381497a0
    6 https://doi.org/10.1016/j.asr.2005.03.003
    7 https://doi.org/10.1016/j.astropartphys.2010.01.002
    8 https://doi.org/10.1051/0004-6361:20030624
    9 https://doi.org/10.1051/0004-6361:20035936
    10 https://doi.org/10.1051/0004-6361:20042205
    11 https://doi.org/10.1051/0004-6361:20064858
    12 https://doi.org/10.1051/0004-6361:200809424
    13 https://doi.org/10.1086/168340
    14 https://doi.org/10.1086/171296
    15 https://doi.org/10.1086/318354
    16 https://doi.org/10.1086/338805
    17 https://doi.org/10.1086/424906
    18 https://doi.org/10.1086/426731
    19 https://doi.org/10.1086/491643
    20 https://doi.org/10.1086/508050
    21 https://doi.org/10.1086/522005
    22 https://doi.org/10.1086/589640
    23 https://doi.org/10.1088/0004-637x/698/2/1523
    24 https://doi.org/10.1088/0004-637x/712/1/596
    25 https://doi.org/10.1088/0067-0049/187/2/460
    26 https://doi.org/10.1103/physrevlett.103.111302
    27 https://doi.org/10.1103/revmodphys.73.1031
    28 https://doi.org/10.1111/j.1365-2966.2004.07597.x
    29 https://doi.org/10.1126/science.1164718
    30 https://doi.org/10.1146/annurev.astro.44.051905.092528
    31 schema:datePublished 2011
    32 schema:datePublishedReg 2011-01-01
    33 schema:description Pulsars, or more generally rotation powered neutron stars, are excellent factories of antimatter in the Galaxy, in the form of pairs of electrons and positrons. Electrons are initially extracted from the surface of the star by the intense rotation induced electric fields and later transformed into electron-positron pairs through electromagnetic cascading. Observations of Pulsar Wind Nebulae (PWNe) show that cascades in the pulsar magnetosphere must ensure pair multiplicities of order 104 -105. These pairs finally end up as part of the relativistic magnetized wind emanating from the pulsar. The wind is slowed down, from its highly relativistic bulk motion, at a termination shock, which represents the reverse shock due to its interaction with the surrounding ejecta of the progenitor supernova. At the (relativistic) termination shock, acceleration of the pairs occurs, as part of the dissipation process, so that the cold wind is transformed into a plasma of relativistic non-thermal particles, plus a potential thermal component, which however has never been observed. As long as the pulsar wind is embedded in the supernova remnant these pairs are forced to escavate a bubble and lose energy adiabatically (because of the expansion) and radiatively (because of magnetic and radiation fields).We discuss here the observational constraints on the energy and number content of such pairs and discuss the scenarios that may allow for the pairs to escape in the interstellar medium and possibly contribute to the positron excess that has recently been detected by the PAMELA satellite. Special attention is dedicated to the case of nebulae surrounding high speed pulsars, observationally classified as Pulsar Bow Shock Nebulae. The pairs produced in these objects may be effectively carried out of the Supernova Remnant and released in the Interstellar Medium. As a result, Bow Shock Pulsar Wind Nebulae might be the main contributors to the positron excess in the Galaxy.
    34 schema:editor N5cb4f05c493f4381959ebb795aca7f80
    35 schema:genre chapter
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf Nac419bba5fc5413497dbf80f72408ce7
    39 schema:name Positrons from pulsar winds
    40 schema:pagination 623-641
    41 schema:productId N5ee61bb64ae74b23a106f59a7032456f
    42 N6ad2f4a2b67246cda902f6cba6030124
    43 Ncb543b2bd7984ee5b0c030bfb122a466
    44 schema:publisher Neca8229ff4e74335a0dc265c8a5aae41
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006379912
    46 https://doi.org/10.1007/978-3-642-17251-9_50
    47 schema:sdDatePublished 2019-04-15T11:32
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N552588bec26d41d38e096d0e0dc45539
    50 schema:url http://link.springer.com/10.1007/978-3-642-17251-9_50
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset chapters
    53 rdf:type schema:Chapter
    54 N46fc3d874e284e20bf83a9ed532fb397 rdf:first N8e6fc5e8d6ce4a819b8bc7578fe1182f
    55 rdf:rest rdf:nil
    56 N5406e386fcdf40b5985d1ba2573ddc15 schema:familyName Torres
    57 schema:givenName Diego F.
    58 rdf:type schema:Person
    59 N552588bec26d41d38e096d0e0dc45539 schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 N5a21af52c9224e9da48efee866d08a61 rdf:first sg:person.010233230732.98
    62 rdf:rest Nb968dd31367848069c149e473174a6f6
    63 N5cb4f05c493f4381959ebb795aca7f80 rdf:first N5406e386fcdf40b5985d1ba2573ddc15
    64 rdf:rest N46fc3d874e284e20bf83a9ed532fb397
    65 N5d82df153fbd453ca3289d937b7791dc schema:name INAF/Arcetri Astrophysical Observatory, Firenze, Italy
    66 rdf:type schema:Organization
    67 N5ee61bb64ae74b23a106f59a7032456f schema:name dimensions_id
    68 schema:value pub.1006379912
    69 rdf:type schema:PropertyValue
    70 N6ad2f4a2b67246cda902f6cba6030124 schema:name doi
    71 schema:value 10.1007/978-3-642-17251-9_50
    72 rdf:type schema:PropertyValue
    73 N8e6fc5e8d6ce4a819b8bc7578fe1182f schema:familyName Rea
    74 schema:givenName Nanda
    75 rdf:type schema:Person
    76 Nac419bba5fc5413497dbf80f72408ce7 schema:isbn 978-3-642-17250-2
    77 978-3-642-17251-9
    78 schema:name High-Energy Emission from Pulsars and their Systems
    79 rdf:type schema:Book
    80 Nb968dd31367848069c149e473174a6f6 rdf:first sg:person.012430376041.49
    81 rdf:rest rdf:nil
    82 Nc15c9d06cb2c4bb293b54bb3401771ec schema:name INAF/Arcetri Astrophysical Observatory, Firenze, Italy
    83 rdf:type schema:Organization
    84 Ncb543b2bd7984ee5b0c030bfb122a466 schema:name readcube_id
    85 schema:value 1e63a3de2ccf35c5632ee4ea3dde0bc58411e437e2cd72d4208f97e615b06d63
    86 rdf:type schema:PropertyValue
    87 Neca8229ff4e74335a0dc265c8a5aae41 schema:location Berlin, Heidelberg
    88 schema:name Springer Berlin Heidelberg
    89 rdf:type schema:Organisation
    90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Physical Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Astronomical and Space Sciences
    95 rdf:type schema:DefinedTerm
    96 sg:person.010233230732.98 schema:affiliation Nc15c9d06cb2c4bb293b54bb3401771ec
    97 schema:familyName Blasi
    98 schema:givenName Pasquale
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010233230732.98
    100 rdf:type schema:Person
    101 sg:person.012430376041.49 schema:affiliation N5d82df153fbd453ca3289d937b7791dc
    102 schema:familyName Amato
    103 schema:givenName Elena
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012430376041.49
    105 rdf:type schema:Person
    106 sg:pub.10.1007/978-3-540-76965-1_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035978098
    107 https://doi.org/10.1007/978-3-540-76965-1_15
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1038/381497a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029158661
    110 https://doi.org/10.1038/381497a0
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/j.asr.2005.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016996676
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.astropartphys.2010.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022585315
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1051/0004-6361:20030624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056930741
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1051/0004-6361:20035936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056932650
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1051/0004-6361:20042205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056934228
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1051/0004-6361:20064858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056936687
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1051/0004-6361:200809424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056940144
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1086/168340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058499630
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1086/171296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058502586
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1086/318354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283004
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1086/338805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050073621
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1086/424906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048465654
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1086/426731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010974732
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1086/491643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058776281
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1086/508050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032362529
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1086/522005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058793397
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1086/589640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052105330
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1088/0004-637x/698/2/1523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000214673
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1088/0004-637x/712/1/596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034915226
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1088/0067-0049/187/2/460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059033944
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1103/physrevlett.103.111302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013648634
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1103/revmodphys.73.1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049793145
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1111/j.1365-2966.2004.07597.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053430046
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1126/science.1164718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062458928
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1146/annurev.astro.44.051905.092528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017997855
    161 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...