Using the Interaction Rhythm as a Natural Reinforcement Signal for Social Robots: A Matter of Belief View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Antoine Hiolle , Lola Cañamero , Pierre Andry , Arnaud Blanchard , Philippe Gaussier

ABSTRACT

In this paper, we present the results of a pilot study of a human robot interaction experiment where the rhythm of the interaction is used as a reinforcement signal to learn sensorimotor associations. The algorithm uses breaks and variations in the rhythm at which the human is producing actions. The concept is based on the hypothesis that a constant rhythm is an intrinsic property of a positive interaction whereas a break reflects a negative event. Subjects from various backgrounds interacted with a NAO robot where they had to teach the robot to mirror their actions by learning the correct sensorimotor associations. The results show that in order for the rhythm to be a useful reinforcement signal, the subjects have to be convinced that the robot is an agent with which they can act naturally, using their voice and facial expressions as cues to help it understand the correct behaviour to learn. When the subjects do behave naturally, the rhythm and its variations truly reflects how well the interaction is going and helps the robot learn efficiently. These results mean that non-expert users can interact naturally and fruitfully with an autonomous robot if the interaction is believed to be natural, without any technical knowledge of the cognitive capacities of the robot. More... »

PAGES

81-89

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-17248-9_9

DOI

http://dx.doi.org/10.1007/978-3-642-17248-9_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050774124


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hertfordshire", 
          "id": "https://www.grid.ac/institutes/grid.5846.f", 
          "name": [
            "Adaptive Systems Research Group, School of Computer Science, University of Hertfordshire, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hiolle", 
        "givenName": "Antoine", 
        "id": "sg:person.011441050376.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011441050376.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hertfordshire", 
          "id": "https://www.grid.ac/institutes/grid.5846.f", 
          "name": [
            "Adaptive Systems Research Group, School of Computer Science, University of Hertfordshire, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ca\u00f1amero", 
        "givenName": "Lola", 
        "id": "sg:person.07371032250.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07371032250.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "ETIS, ENSEA, Universite de Cergy-Pontoise, CNRS, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andry", 
        "givenName": "Pierre", 
        "id": "sg:person.012152621257.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012152621257.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "ETIS, ENSEA, Universite de Cergy-Pontoise, CNRS, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blanchard", 
        "givenName": "Arnaud", 
        "id": "sg:person.010036714437.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010036714437.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "ETIS, ENSEA, Universite de Cergy-Pontoise, CNRS, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaussier", 
        "givenName": "Philippe", 
        "id": "sg:person.01041272554.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1467-8624.1997.tb04218.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012851013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/105971230401200104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022720961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/105971230401200104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022720961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infbeh.2005.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033559174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infbeh.2005.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033559174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3468.952717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2006.890271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604785"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "In this paper, we present the results of a pilot study of a human robot interaction experiment where the rhythm of the interaction is used as a reinforcement signal to learn sensorimotor associations. The algorithm uses breaks and variations in the rhythm at which the human is producing actions. The concept is based on the hypothesis that a constant rhythm is an intrinsic property of a positive interaction whereas a break reflects a negative event. Subjects from various backgrounds interacted with a NAO robot where they had to teach the robot to mirror their actions by learning the correct sensorimotor associations. The results show that in order for the rhythm to be a useful reinforcement signal, the subjects have to be convinced that the robot is an agent with which they can act naturally, using their voice and facial expressions as cues to help it understand the correct behaviour to learn. When the subjects do behave naturally, the rhythm and its variations truly reflects how well the interaction is going and helps the robot learn efficiently. These results mean that non-expert users can interact naturally and fruitfully with an autonomous robot if the interaction is believed to be natural, without any technical knowledge of the cognitive capacities of the robot.", 
    "editor": [
      {
        "familyName": "Ge", 
        "givenName": "Shuzhi Sam", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Haizhou", 
        "type": "Person"
      }, 
      {
        "familyName": "Cabibihan", 
        "givenName": "John-John", 
        "type": "Person"
      }, 
      {
        "familyName": "Tan", 
        "givenName": "Yeow Kee", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-17248-9_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-17247-2", 
        "978-3-642-17248-9"
      ], 
      "name": "Social Robotics", 
      "type": "Book"
    }, 
    "name": "Using the Interaction Rhythm as a Natural Reinforcement Signal for Social Robots: A Matter of Belief", 
    "pagination": "81-89", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050774124"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-17248-9_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f1de1b063326c01decc9302a7aeaf796bbabb0ef41243b534aa5ec7f4d686b02"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-17248-9_9", 
      "https://app.dimensions.ai/details/publication/pub.1050774124"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70064_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-17248-9_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17248-9_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17248-9_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17248-9_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17248-9_9'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-17248-9_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N27c41a78b8114f00b3c81bccbde66c0e
4 schema:citation https://doi.org/10.1016/j.infbeh.2005.03.005
5 https://doi.org/10.1109/3468.952717
6 https://doi.org/10.1109/tevc.2006.890271
7 https://doi.org/10.1111/j.1467-8624.1997.tb04218.x
8 https://doi.org/10.1177/105971230401200104
9 schema:datePublished 2010
10 schema:datePublishedReg 2010-01-01
11 schema:description In this paper, we present the results of a pilot study of a human robot interaction experiment where the rhythm of the interaction is used as a reinforcement signal to learn sensorimotor associations. The algorithm uses breaks and variations in the rhythm at which the human is producing actions. The concept is based on the hypothesis that a constant rhythm is an intrinsic property of a positive interaction whereas a break reflects a negative event. Subjects from various backgrounds interacted with a NAO robot where they had to teach the robot to mirror their actions by learning the correct sensorimotor associations. The results show that in order for the rhythm to be a useful reinforcement signal, the subjects have to be convinced that the robot is an agent with which they can act naturally, using their voice and facial expressions as cues to help it understand the correct behaviour to learn. When the subjects do behave naturally, the rhythm and its variations truly reflects how well the interaction is going and helps the robot learn efficiently. These results mean that non-expert users can interact naturally and fruitfully with an autonomous robot if the interaction is believed to be natural, without any technical knowledge of the cognitive capacities of the robot.
12 schema:editor Nbbc531c73419452f8efa1021b8cc6985
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N279d5c8c31a84b9d809b796421346435
17 schema:name Using the Interaction Rhythm as a Natural Reinforcement Signal for Social Robots: A Matter of Belief
18 schema:pagination 81-89
19 schema:productId N3d4ec2f6bdb747b88a3db21ea9d823c8
20 N4f5605f63383404fab61ef42deb81f1f
21 Nbfe9e5fa9f2d4a8d834c1ac59ac59ecd
22 schema:publisher N1ba0df01f0384af28ab3a9c700c2f0f3
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050774124
24 https://doi.org/10.1007/978-3-642-17248-9_9
25 schema:sdDatePublished 2019-04-16T08:28
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nca9e89cd8d044b1483602fffe68bfa7c
28 schema:url https://link.springer.com/10.1007%2F978-3-642-17248-9_9
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N0a3afffa58f442f880fb5d32428ec73d schema:familyName Ge
33 schema:givenName Shuzhi Sam
34 rdf:type schema:Person
35 N1ba0df01f0384af28ab3a9c700c2f0f3 schema:location Berlin, Heidelberg
36 schema:name Springer Berlin Heidelberg
37 rdf:type schema:Organisation
38 N279d5c8c31a84b9d809b796421346435 schema:isbn 978-3-642-17247-2
39 978-3-642-17248-9
40 schema:name Social Robotics
41 rdf:type schema:Book
42 N27c41a78b8114f00b3c81bccbde66c0e rdf:first sg:person.011441050376.01
43 rdf:rest N3e0a8862aa494f00b0a8b2679d635064
44 N2af879b2d8b34026a57b97c754b8c913 schema:familyName Tan
45 schema:givenName Yeow Kee
46 rdf:type schema:Person
47 N3d4ec2f6bdb747b88a3db21ea9d823c8 schema:name dimensions_id
48 schema:value pub.1050774124
49 rdf:type schema:PropertyValue
50 N3e0a8862aa494f00b0a8b2679d635064 rdf:first sg:person.07371032250.61
51 rdf:rest Nd89e781c523b4dc49f5027f1aeff60c0
52 N4838a26451a14a2e95d42683f86f0053 schema:familyName Cabibihan
53 schema:givenName John-John
54 rdf:type schema:Person
55 N4f5605f63383404fab61ef42deb81f1f schema:name readcube_id
56 schema:value f1de1b063326c01decc9302a7aeaf796bbabb0ef41243b534aa5ec7f4d686b02
57 rdf:type schema:PropertyValue
58 N60b14c466330462f920a8f2b9ab727b4 rdf:first sg:person.01041272554.05
59 rdf:rest rdf:nil
60 N6a78f4bbbc00418a8379c1822bd27e0a rdf:first N4838a26451a14a2e95d42683f86f0053
61 rdf:rest N76ed22d3e21744fabbf023f70976751c
62 N76ed22d3e21744fabbf023f70976751c rdf:first N2af879b2d8b34026a57b97c754b8c913
63 rdf:rest rdf:nil
64 N7d4216a53025403288c63bafa729b3b1 schema:familyName Li
65 schema:givenName Haizhou
66 rdf:type schema:Person
67 Nbbc531c73419452f8efa1021b8cc6985 rdf:first N0a3afffa58f442f880fb5d32428ec73d
68 rdf:rest Nf4d1c89064bf42059810a448c09fc0f3
69 Nbc82e2a8d79a4a46a14b4377b5ea1a3e rdf:first sg:person.010036714437.98
70 rdf:rest N60b14c466330462f920a8f2b9ab727b4
71 Nbfe9e5fa9f2d4a8d834c1ac59ac59ecd schema:name doi
72 schema:value 10.1007/978-3-642-17248-9_9
73 rdf:type schema:PropertyValue
74 Nca9e89cd8d044b1483602fffe68bfa7c schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nd89e781c523b4dc49f5027f1aeff60c0 rdf:first sg:person.012152621257.16
77 rdf:rest Nbc82e2a8d79a4a46a14b4377b5ea1a3e
78 Nf4d1c89064bf42059810a448c09fc0f3 rdf:first N7d4216a53025403288c63bafa729b3b1
79 rdf:rest N6a78f4bbbc00418a8379c1822bd27e0a
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:person.010036714437.98 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
87 schema:familyName Blanchard
88 schema:givenName Arnaud
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010036714437.98
90 rdf:type schema:Person
91 sg:person.01041272554.05 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
92 schema:familyName Gaussier
93 schema:givenName Philippe
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05
95 rdf:type schema:Person
96 sg:person.011441050376.01 schema:affiliation https://www.grid.ac/institutes/grid.5846.f
97 schema:familyName Hiolle
98 schema:givenName Antoine
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011441050376.01
100 rdf:type schema:Person
101 sg:person.012152621257.16 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
102 schema:familyName Andry
103 schema:givenName Pierre
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012152621257.16
105 rdf:type schema:Person
106 sg:person.07371032250.61 schema:affiliation https://www.grid.ac/institutes/grid.5846.f
107 schema:familyName Cañamero
108 schema:givenName Lola
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07371032250.61
110 rdf:type schema:Person
111 https://doi.org/10.1016/j.infbeh.2005.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033559174
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/3468.952717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157851
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tevc.2006.890271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604785
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1111/j.1467-8624.1997.tb04218.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012851013
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1177/105971230401200104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022720961
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
122 schema:name ETIS, ENSEA, Universite de Cergy-Pontoise, CNRS, France
123 rdf:type schema:Organization
124 https://www.grid.ac/institutes/grid.5846.f schema:alternateName University of Hertfordshire
125 schema:name Adaptive Systems Research Group, School of Computer Science, University of Hertfordshire, England
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...