Using the Interaction Rhythm as a Natural Reinforcement Signal for Social Robots: A Matter of Belief View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Antoine Hiolle , Lola Cañamero , Pierre Andry , Arnaud Blanchard , Philippe Gaussier

ABSTRACT

In this paper, we present the results of a pilot study of a human robot interaction experiment where the rhythm of the interaction is used as a reinforcement signal to learn sensorimotor associations. The algorithm uses breaks and variations in the rhythm at which the human is producing actions. The concept is based on the hypothesis that a constant rhythm is an intrinsic property of a positive interaction whereas a break reflects a negative event. Subjects from various backgrounds interacted with a NAO robot where they had to teach the robot to mirror their actions by learning the correct sensorimotor associations. The results show that in order for the rhythm to be a useful reinforcement signal, the subjects have to be convinced that the robot is an agent with which they can act naturally, using their voice and facial expressions as cues to help it understand the correct behaviour to learn. When the subjects do behave naturally, the rhythm and its variations truly reflects how well the interaction is going and helps the robot learn efficiently. These results mean that non-expert users can interact naturally and fruitfully with an autonomous robot if the interaction is believed to be natural, without any technical knowledge of the cognitive capacities of the robot. More... »

PAGES

81-89

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-17248-9_9

DOI

http://dx.doi.org/10.1007/978-3-642-17248-9_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050774124


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hertfordshire", 
          "id": "https://www.grid.ac/institutes/grid.5846.f", 
          "name": [
            "Adaptive Systems Research Group, School of Computer Science, University of Hertfordshire, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hiolle", 
        "givenName": "Antoine", 
        "id": "sg:person.011441050376.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011441050376.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hertfordshire", 
          "id": "https://www.grid.ac/institutes/grid.5846.f", 
          "name": [
            "Adaptive Systems Research Group, School of Computer Science, University of Hertfordshire, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ca\u00f1amero", 
        "givenName": "Lola", 
        "id": "sg:person.07371032250.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07371032250.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "ETIS, ENSEA, Universite de Cergy-Pontoise, CNRS, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andry", 
        "givenName": "Pierre", 
        "id": "sg:person.012152621257.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012152621257.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "ETIS, ENSEA, Universite de Cergy-Pontoise, CNRS, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blanchard", 
        "givenName": "Arnaud", 
        "id": "sg:person.010036714437.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010036714437.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "ETIS, ENSEA, Universite de Cergy-Pontoise, CNRS, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaussier", 
        "givenName": "Philippe", 
        "id": "sg:person.01041272554.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1467-8624.1997.tb04218.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012851013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/105971230401200104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022720961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/105971230401200104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022720961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infbeh.2005.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033559174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infbeh.2005.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033559174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3468.952717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2006.890271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604785"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "In this paper, we present the results of a pilot study of a human robot interaction experiment where the rhythm of the interaction is used as a reinforcement signal to learn sensorimotor associations. The algorithm uses breaks and variations in the rhythm at which the human is producing actions. The concept is based on the hypothesis that a constant rhythm is an intrinsic property of a positive interaction whereas a break reflects a negative event. Subjects from various backgrounds interacted with a NAO robot where they had to teach the robot to mirror their actions by learning the correct sensorimotor associations. The results show that in order for the rhythm to be a useful reinforcement signal, the subjects have to be convinced that the robot is an agent with which they can act naturally, using their voice and facial expressions as cues to help it understand the correct behaviour to learn. When the subjects do behave naturally, the rhythm and its variations truly reflects how well the interaction is going and helps the robot learn efficiently. These results mean that non-expert users can interact naturally and fruitfully with an autonomous robot if the interaction is believed to be natural, without any technical knowledge of the cognitive capacities of the robot.", 
    "editor": [
      {
        "familyName": "Ge", 
        "givenName": "Shuzhi Sam", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Haizhou", 
        "type": "Person"
      }, 
      {
        "familyName": "Cabibihan", 
        "givenName": "John-John", 
        "type": "Person"
      }, 
      {
        "familyName": "Tan", 
        "givenName": "Yeow Kee", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-17248-9_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-17247-2", 
        "978-3-642-17248-9"
      ], 
      "name": "Social Robotics", 
      "type": "Book"
    }, 
    "name": "Using the Interaction Rhythm as a Natural Reinforcement Signal for Social Robots: A Matter of Belief", 
    "pagination": "81-89", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050774124"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-17248-9_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f1de1b063326c01decc9302a7aeaf796bbabb0ef41243b534aa5ec7f4d686b02"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-17248-9_9", 
      "https://app.dimensions.ai/details/publication/pub.1050774124"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70064_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-17248-9_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17248-9_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17248-9_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17248-9_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-17248-9_9'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-17248-9_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbca4b5bc12bc4c498c28f59f4f43d5a4
4 schema:citation https://doi.org/10.1016/j.infbeh.2005.03.005
5 https://doi.org/10.1109/3468.952717
6 https://doi.org/10.1109/tevc.2006.890271
7 https://doi.org/10.1111/j.1467-8624.1997.tb04218.x
8 https://doi.org/10.1177/105971230401200104
9 schema:datePublished 2010
10 schema:datePublishedReg 2010-01-01
11 schema:description In this paper, we present the results of a pilot study of a human robot interaction experiment where the rhythm of the interaction is used as a reinforcement signal to learn sensorimotor associations. The algorithm uses breaks and variations in the rhythm at which the human is producing actions. The concept is based on the hypothesis that a constant rhythm is an intrinsic property of a positive interaction whereas a break reflects a negative event. Subjects from various backgrounds interacted with a NAO robot where they had to teach the robot to mirror their actions by learning the correct sensorimotor associations. The results show that in order for the rhythm to be a useful reinforcement signal, the subjects have to be convinced that the robot is an agent with which they can act naturally, using their voice and facial expressions as cues to help it understand the correct behaviour to learn. When the subjects do behave naturally, the rhythm and its variations truly reflects how well the interaction is going and helps the robot learn efficiently. These results mean that non-expert users can interact naturally and fruitfully with an autonomous robot if the interaction is believed to be natural, without any technical knowledge of the cognitive capacities of the robot.
12 schema:editor N2ce1dd00cdf54e92bc83d4cf492d1d7a
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N92ae98c07f4341a3b529aa4a4d135bd2
17 schema:name Using the Interaction Rhythm as a Natural Reinforcement Signal for Social Robots: A Matter of Belief
18 schema:pagination 81-89
19 schema:productId N3ec07e4f0cec4064b89396ecc4564849
20 N658190942ac246f88ed7a41098fbe469
21 Nf9be1fdb82a14b3699ca0883bc2d7be3
22 schema:publisher Nae2bde535e6441fcbccfc229d4c47c21
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050774124
24 https://doi.org/10.1007/978-3-642-17248-9_9
25 schema:sdDatePublished 2019-04-16T08:28
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nf12f83c2b38f4f578dbeca7a2ce85e25
28 schema:url https://link.springer.com/10.1007%2F978-3-642-17248-9_9
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N05b1fe9c52b34cc5bffe02ec914aa113 rdf:first Nd141b1b606a44743afeaf12cd11a5fa7
33 rdf:rest rdf:nil
34 N05eeb626c11f4fb191a4db9032c5e54e rdf:first sg:person.01041272554.05
35 rdf:rest rdf:nil
36 N1d7b71db80fa4608b34a5d00e35c1fa5 schema:familyName Cabibihan
37 schema:givenName John-John
38 rdf:type schema:Person
39 N2ce1dd00cdf54e92bc83d4cf492d1d7a rdf:first N8bdac816a76a47268048f24c45d08a89
40 rdf:rest N3fba859eb92b4d48ad6bde559842452e
41 N38702b95ea534bcf82b088ed5344cdae rdf:first sg:person.07371032250.61
42 rdf:rest Ndb18ad16f14a4e30bdc1f71c5473106e
43 N3ec07e4f0cec4064b89396ecc4564849 schema:name dimensions_id
44 schema:value pub.1050774124
45 rdf:type schema:PropertyValue
46 N3fba859eb92b4d48ad6bde559842452e rdf:first N7a8169e4462046d3aac79b8cea968316
47 rdf:rest Na001f4dfcf0141dab3fb24920a83601c
48 N658190942ac246f88ed7a41098fbe469 schema:name doi
49 schema:value 10.1007/978-3-642-17248-9_9
50 rdf:type schema:PropertyValue
51 N7a8169e4462046d3aac79b8cea968316 schema:familyName Li
52 schema:givenName Haizhou
53 rdf:type schema:Person
54 N7d532ba9413a45babc237ebcf3863800 rdf:first sg:person.010036714437.98
55 rdf:rest N05eeb626c11f4fb191a4db9032c5e54e
56 N8bdac816a76a47268048f24c45d08a89 schema:familyName Ge
57 schema:givenName Shuzhi Sam
58 rdf:type schema:Person
59 N92ae98c07f4341a3b529aa4a4d135bd2 schema:isbn 978-3-642-17247-2
60 978-3-642-17248-9
61 schema:name Social Robotics
62 rdf:type schema:Book
63 Na001f4dfcf0141dab3fb24920a83601c rdf:first N1d7b71db80fa4608b34a5d00e35c1fa5
64 rdf:rest N05b1fe9c52b34cc5bffe02ec914aa113
65 Nae2bde535e6441fcbccfc229d4c47c21 schema:location Berlin, Heidelberg
66 schema:name Springer Berlin Heidelberg
67 rdf:type schema:Organisation
68 Nbca4b5bc12bc4c498c28f59f4f43d5a4 rdf:first sg:person.011441050376.01
69 rdf:rest N38702b95ea534bcf82b088ed5344cdae
70 Nd141b1b606a44743afeaf12cd11a5fa7 schema:familyName Tan
71 schema:givenName Yeow Kee
72 rdf:type schema:Person
73 Ndb18ad16f14a4e30bdc1f71c5473106e rdf:first sg:person.012152621257.16
74 rdf:rest N7d532ba9413a45babc237ebcf3863800
75 Nf12f83c2b38f4f578dbeca7a2ce85e25 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nf9be1fdb82a14b3699ca0883bc2d7be3 schema:name readcube_id
78 schema:value f1de1b063326c01decc9302a7aeaf796bbabb0ef41243b534aa5ec7f4d686b02
79 rdf:type schema:PropertyValue
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:person.010036714437.98 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
87 schema:familyName Blanchard
88 schema:givenName Arnaud
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010036714437.98
90 rdf:type schema:Person
91 sg:person.01041272554.05 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
92 schema:familyName Gaussier
93 schema:givenName Philippe
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05
95 rdf:type schema:Person
96 sg:person.011441050376.01 schema:affiliation https://www.grid.ac/institutes/grid.5846.f
97 schema:familyName Hiolle
98 schema:givenName Antoine
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011441050376.01
100 rdf:type schema:Person
101 sg:person.012152621257.16 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
102 schema:familyName Andry
103 schema:givenName Pierre
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012152621257.16
105 rdf:type schema:Person
106 sg:person.07371032250.61 schema:affiliation https://www.grid.ac/institutes/grid.5846.f
107 schema:familyName Cañamero
108 schema:givenName Lola
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07371032250.61
110 rdf:type schema:Person
111 https://doi.org/10.1016/j.infbeh.2005.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033559174
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/3468.952717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157851
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tevc.2006.890271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604785
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1111/j.1467-8624.1997.tb04218.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012851013
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1177/105971230401200104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022720961
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
122 schema:name ETIS, ENSEA, Universite de Cergy-Pontoise, CNRS, France
123 rdf:type schema:Organization
124 https://www.grid.ac/institutes/grid.5846.f schema:alternateName University of Hertfordshire
125 schema:name Adaptive Systems Research Group, School of Computer Science, University of Hertfordshire, England
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...