Influence Clubs in Social Networks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Chin-Ping Yang , Chen-Yi Liu , Bang Ye Wu

ABSTRACT

A new model “influence club” for cohesion group in a social network is proposed. It generalizes the definition of k-club and has two advantages. First, the influence between two nodes does not only depend on the their distance but also on the numbers of pathways of different lengths. Second, the new model is more flexible than k-club and can provide middle results between k-club and (k + 1)-club. We propose a branch-and-bound algorithm for finding the maximum influence club. For an n-node graph, the worst-case time complexity is O(n3 1.6n), and it is much more efficient in practical: a graph of 200 nodes can be processed within 2 minutes. The performance compared to k-clubs are tested on random graphs and real data. The experimental results also show the advantages of the influence clubs. More... »

PAGES

1-10

Book

TITLE

Computational Collective Intelligence. Technologies and Applications

ISBN

978-3-642-16731-7
978-3-642-16732-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-16732-4_1

DOI

http://dx.doi.org/10.1007/978-3-642-16732-4_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038159351


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Chung Cheng University, 621, ChiaYi, Taiwan, R.O.C.", 
          "id": "http://www.grid.ac/institutes/grid.412047.4", 
          "name": [
            "National Chung Cheng University, 621, ChiaYi, Taiwan, R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Chin-Ping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Chung Cheng University, 621, ChiaYi, Taiwan, R.O.C.", 
          "id": "http://www.grid.ac/institutes/grid.412047.4", 
          "name": [
            "National Chung Cheng University, 621, ChiaYi, Taiwan, R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Chen-Yi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Chung Cheng University, 621, ChiaYi, Taiwan, R.O.C.", 
          "id": "http://www.grid.ac/institutes/grid.412047.4", 
          "name": [
            "National Chung Cheng University, 621, ChiaYi, Taiwan, R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Bang Ye", 
        "id": "sg:person.013045767237.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045767237.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "A new model \u201cinfluence club\u201d for cohesion group in a social network is proposed. It generalizes the definition of k-club and has two advantages. First, the influence between two nodes does not only depend on the their distance but also on the numbers of pathways of different lengths. Second, the new model is more flexible than k-club and can provide middle results between k-club and (k\u2009+\u20091)-club. We propose a branch-and-bound algorithm for finding the maximum influence club. For an n-node graph, the worst-case time complexity is O(n3 1.6n), and it is much more efficient in practical: a graph of 200 nodes can be processed within 2 minutes. The performance compared to k-clubs are tested on random graphs and real data. The experimental results also show the advantages of the influence clubs.", 
    "editor": [
      {
        "familyName": "Pan", 
        "givenName": "Jeng-Shyang", 
        "type": "Person"
      }, 
      {
        "familyName": "Chen", 
        "givenName": "Shyi-Ming", 
        "type": "Person"
      }, 
      {
        "familyName": "Nguyen", 
        "givenName": "Ngoc Thanh", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-16732-4_1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-16731-7", 
        "978-3-642-16732-4"
      ], 
      "name": "Computational Collective Intelligence. Technologies and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "social networks", 
      "worst-case time complexity", 
      "middle result", 
      "node graph", 
      "time complexity", 
      "real data", 
      "network", 
      "nodes", 
      "graph", 
      "random graphs", 
      "experimental results", 
      "new model", 
      "advantages", 
      "algorithm", 
      "complexity", 
      "model", 
      "performance", 
      "definition", 
      "results", 
      "data", 
      "distance", 
      "number", 
      "clubs", 
      "different lengths", 
      "branches", 
      "group", 
      "influence", 
      "number of pathways", 
      "length", 
      "minutes", 
      "pathway", 
      "cohesion group", 
      "influence club", 
      "maximum influence club"
    ], 
    "name": "Influence Clubs in Social Networks", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038159351"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-16732-4_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-16732-4_1", 
      "https://app.dimensions.ai/details/publication/pub.1038159351"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_168.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-16732-4_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16732-4_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16732-4_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16732-4_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16732-4_1'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      23 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-16732-4_1 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N7b2eaa101cfa4a108a11b29443864d61
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description A new model “influence club” for cohesion group in a social network is proposed. It generalizes the definition of k-club and has two advantages. First, the influence between two nodes does not only depend on the their distance but also on the numbers of pathways of different lengths. Second, the new model is more flexible than k-club and can provide middle results between k-club and (k + 1)-club. We propose a branch-and-bound algorithm for finding the maximum influence club. For an n-node graph, the worst-case time complexity is O(n3 1.6n), and it is much more efficient in practical: a graph of 200 nodes can be processed within 2 minutes. The performance compared to k-clubs are tested on random graphs and real data. The experimental results also show the advantages of the influence clubs.
7 schema:editor N803f48b80e894283a73f62275fbb5808
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N64fc863578f048bd987091cbb3ca1d55
12 schema:keywords advantages
13 algorithm
14 branches
15 clubs
16 cohesion group
17 complexity
18 data
19 definition
20 different lengths
21 distance
22 experimental results
23 graph
24 group
25 influence
26 influence club
27 length
28 maximum influence club
29 middle result
30 minutes
31 model
32 network
33 new model
34 node graph
35 nodes
36 number
37 number of pathways
38 pathway
39 performance
40 random graphs
41 real data
42 results
43 social networks
44 time complexity
45 worst-case time complexity
46 schema:name Influence Clubs in Social Networks
47 schema:pagination 1-10
48 schema:productId N6eae2a13b97649e3a5db58623d4a3291
49 N7c657993cdc04a89b581fd5acba39ee6
50 schema:publisher Ne3031cdba013412c8c9151304420d21a
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038159351
52 https://doi.org/10.1007/978-3-642-16732-4_1
53 schema:sdDatePublished 2021-12-01T19:58
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nb535b6c927f545c4844113d117e1ece6
56 schema:url https://doi.org/10.1007/978-3-642-16732-4_1
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N1f38282812304eb096b9f60cca6710b9 schema:familyName Pan
61 schema:givenName Jeng-Shyang
62 rdf:type schema:Person
63 N316d132d596a4fdb90e0369bfdcc092a schema:familyName Nguyen
64 schema:givenName Ngoc Thanh
65 rdf:type schema:Person
66 N5d9eec2131fc4053851eaaffc1f5541d rdf:first N675634680fef4acbacafc479c5af8166
67 rdf:rest N88c25a5eec8b47efa3e489d3edef8c27
68 N64fc863578f048bd987091cbb3ca1d55 schema:isbn 978-3-642-16731-7
69 978-3-642-16732-4
70 schema:name Computational Collective Intelligence. Technologies and Applications
71 rdf:type schema:Book
72 N675634680fef4acbacafc479c5af8166 schema:affiliation grid-institutes:grid.412047.4
73 schema:familyName Liu
74 schema:givenName Chen-Yi
75 rdf:type schema:Person
76 N6eae2a13b97649e3a5db58623d4a3291 schema:name dimensions_id
77 schema:value pub.1038159351
78 rdf:type schema:PropertyValue
79 N70ebca9ea5524731a7778ff067705667 schema:affiliation grid-institutes:grid.412047.4
80 schema:familyName Yang
81 schema:givenName Chin-Ping
82 rdf:type schema:Person
83 N7b2eaa101cfa4a108a11b29443864d61 rdf:first N70ebca9ea5524731a7778ff067705667
84 rdf:rest N5d9eec2131fc4053851eaaffc1f5541d
85 N7c657993cdc04a89b581fd5acba39ee6 schema:name doi
86 schema:value 10.1007/978-3-642-16732-4_1
87 rdf:type schema:PropertyValue
88 N803f48b80e894283a73f62275fbb5808 rdf:first N1f38282812304eb096b9f60cca6710b9
89 rdf:rest Nae97f714cf3d47f49aae269d8b92b5e5
90 N88c25a5eec8b47efa3e489d3edef8c27 rdf:first sg:person.013045767237.23
91 rdf:rest rdf:nil
92 Nae7374f0f9b041eeace51e5f4e80c734 rdf:first N316d132d596a4fdb90e0369bfdcc092a
93 rdf:rest rdf:nil
94 Nae97f714cf3d47f49aae269d8b92b5e5 rdf:first Nd2e08caff4d0432fbf93b1ca883115fa
95 rdf:rest Nae7374f0f9b041eeace51e5f4e80c734
96 Nb535b6c927f545c4844113d117e1ece6 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nd2e08caff4d0432fbf93b1ca883115fa schema:familyName Chen
99 schema:givenName Shyi-Ming
100 rdf:type schema:Person
101 Ne3031cdba013412c8c9151304420d21a schema:name Springer Nature
102 rdf:type schema:Organisation
103 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
104 schema:name Psychology and Cognitive Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
107 schema:name Psychology
108 rdf:type schema:DefinedTerm
109 sg:person.013045767237.23 schema:affiliation grid-institutes:grid.412047.4
110 schema:familyName Wu
111 schema:givenName Bang Ye
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045767237.23
113 rdf:type schema:Person
114 grid-institutes:grid.412047.4 schema:alternateName National Chung Cheng University, 621, ChiaYi, Taiwan, R.O.C.
115 schema:name National Chung Cheng University, 621, ChiaYi, Taiwan, R.O.C.
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...