Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Jason Laurie , Umberto Bortolozzo , Sergey Nazarenko , Stefania Residori

ABSTRACT

We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction. More... »

PAGES

67-87

Book

TITLE

Localized States in Physics: Solitons and Patterns

ISBN

978-3-642-16548-1
978-3-642-16549-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-16549-8_4

DOI

http://dx.doi.org/10.1007/978-3-642-16549-8_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015460153


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0911", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Maritime Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Warwick", 
          "id": "https://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laurie", 
        "givenName": "Jason", 
        "id": "sg:person.013224700245.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224700245.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INLN, Universi\u00e9 de Nice Sophia-Antipolis, CNRS, 1361 route des Lucioles, 06560\u00a0Valbonne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bortolozzo", 
        "givenName": "Umberto", 
        "id": "sg:person.01105210140.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105210140.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warwick", 
          "id": "https://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nazarenko", 
        "givenName": "Sergey", 
        "id": "sg:person.01126157202.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126157202.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INLN, Universi\u00e9 de Nice Sophia-Antipolis, CNRS, 1361 route des Lucioles, 06560\u00a0Valbonne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Residori", 
        "givenName": "Stefania", 
        "id": "sg:person.01361016337.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361016337.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.", 
    "editor": [
      {
        "familyName": "Descalzi", 
        "givenName": "Orazio", 
        "type": "Person"
      }, 
      {
        "familyName": "Clerc", 
        "givenName": "Marcel", 
        "type": "Person"
      }, 
      {
        "familyName": "Residori", 
        "givenName": "Stefania", 
        "type": "Person"
      }, 
      {
        "familyName": "Assanto", 
        "givenName": "Gaetano", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-16549-8_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-16548-1", 
        "978-3-642-16549-8"
      ], 
      "name": "Localized States in Physics: Solitons and Patterns", 
      "type": "Book"
    }, 
    "name": "Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment", 
    "pagination": "67-87", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-16549-8_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49a9382e3ba62909f21a70ebd298affce5d7c7c9c00b8a38af97ae34904dd3e7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015460153"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-16549-8_4", 
      "https://app.dimensions.ai/details/publication/pub.1015460153"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000026.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-16549-8_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16549-8_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16549-8_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16549-8_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16549-8_4'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-16549-8_4 schema:about anzsrc-for:09
2 anzsrc-for:0911
3 schema:author N516920ff4f384a37b60f0ebaaa09faf5
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.
7 schema:editor Nf76228c045294643ba4bcf738a23a991
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N5c80539925cf4e2c91fb537d442abae7
12 schema:name Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment
13 schema:pagination 67-87
14 schema:productId N623b6d6caa3048748d7114a1432be31b
15 Nd2cfc08f7b9147cb8bd75524acc5faef
16 Nefdde4bf131d4f619ed73155947f4ca2
17 schema:publisher N95211637fb42473a94b0c82d25ce6445
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015460153
19 https://doi.org/10.1007/978-3-642-16549-8_4
20 schema:sdDatePublished 2019-04-15T22:41
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nc0f3629ae6304eb8847f9aeea41e403c
23 schema:url http://link.springer.com/10.1007/978-3-642-16549-8_4
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0a2364bb87ff4d3d86f4de08763f511b schema:name INLN, Universié de Nice Sophia-Antipolis, CNRS, 1361 route des Lucioles, 06560 Valbonne, France
28 rdf:type schema:Organization
29 N46532082f2b543fcbbbf58f37fdf7a91 schema:name INLN, Universié de Nice Sophia-Antipolis, CNRS, 1361 route des Lucioles, 06560 Valbonne, France
30 rdf:type schema:Organization
31 N516920ff4f384a37b60f0ebaaa09faf5 rdf:first sg:person.013224700245.32
32 rdf:rest Nbb21321acfc6446690d9e2203382430b
33 N58ef0dfc6daa44cf9996752203f51d49 schema:familyName Descalzi
34 schema:givenName Orazio
35 rdf:type schema:Person
36 N5c80539925cf4e2c91fb537d442abae7 schema:isbn 978-3-642-16548-1
37 978-3-642-16549-8
38 schema:name Localized States in Physics: Solitons and Patterns
39 rdf:type schema:Book
40 N623b6d6caa3048748d7114a1432be31b schema:name dimensions_id
41 schema:value pub.1015460153
42 rdf:type schema:PropertyValue
43 N6ae7b6a6f0194c638125f143c4fb1df3 rdf:first sg:person.01126157202.31
44 rdf:rest Nb800b5514e78488395c2007f3b0b68d2
45 N8451ee4fce5448f88f8f150e3a9f20fd rdf:first Nf54b127d5c394dad991c073b34a00385
46 rdf:rest Ne9d02e12c52d4e9fa218fd6ead436765
47 N8aa825cf7886455fbce0c0950b6ed8bf rdf:first Nb3336bddd5764fa98569ff500292dae6
48 rdf:rest N8451ee4fce5448f88f8f150e3a9f20fd
49 N95211637fb42473a94b0c82d25ce6445 schema:location Berlin, Heidelberg
50 schema:name Springer Berlin Heidelberg
51 rdf:type schema:Organisation
52 Nb3336bddd5764fa98569ff500292dae6 schema:familyName Clerc
53 schema:givenName Marcel
54 rdf:type schema:Person
55 Nb64f6ed01c4b4af68b317bb987ad23da schema:familyName Assanto
56 schema:givenName Gaetano
57 rdf:type schema:Person
58 Nb800b5514e78488395c2007f3b0b68d2 rdf:first sg:person.01361016337.22
59 rdf:rest rdf:nil
60 Nbb21321acfc6446690d9e2203382430b rdf:first sg:person.01105210140.66
61 rdf:rest N6ae7b6a6f0194c638125f143c4fb1df3
62 Nc0f3629ae6304eb8847f9aeea41e403c schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nd2cfc08f7b9147cb8bd75524acc5faef schema:name doi
65 schema:value 10.1007/978-3-642-16549-8_4
66 rdf:type schema:PropertyValue
67 Ne9d02e12c52d4e9fa218fd6ead436765 rdf:first Nb64f6ed01c4b4af68b317bb987ad23da
68 rdf:rest rdf:nil
69 Nefdde4bf131d4f619ed73155947f4ca2 schema:name readcube_id
70 schema:value 49a9382e3ba62909f21a70ebd298affce5d7c7c9c00b8a38af97ae34904dd3e7
71 rdf:type schema:PropertyValue
72 Nf54b127d5c394dad991c073b34a00385 schema:familyName Residori
73 schema:givenName Stefania
74 rdf:type schema:Person
75 Nf76228c045294643ba4bcf738a23a991 rdf:first N58ef0dfc6daa44cf9996752203f51d49
76 rdf:rest N8aa825cf7886455fbce0c0950b6ed8bf
77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
78 schema:name Engineering
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0911 schema:inDefinedTermSet anzsrc-for:
81 schema:name Maritime Engineering
82 rdf:type schema:DefinedTerm
83 sg:person.01105210140.66 schema:affiliation N0a2364bb87ff4d3d86f4de08763f511b
84 schema:familyName Bortolozzo
85 schema:givenName Umberto
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105210140.66
87 rdf:type schema:Person
88 sg:person.01126157202.31 schema:affiliation https://www.grid.ac/institutes/grid.7372.1
89 schema:familyName Nazarenko
90 schema:givenName Sergey
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126157202.31
92 rdf:type schema:Person
93 sg:person.013224700245.32 schema:affiliation https://www.grid.ac/institutes/grid.7372.1
94 schema:familyName Laurie
95 schema:givenName Jason
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224700245.32
97 rdf:type schema:Person
98 sg:person.01361016337.22 schema:affiliation N46532082f2b543fcbbbf58f37fdf7a91
99 schema:familyName Residori
100 schema:givenName Stefania
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361016337.22
102 rdf:type schema:Person
103 https://www.grid.ac/institutes/grid.7372.1 schema:alternateName University of Warwick
104 schema:name Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...