String Retrieval for Multi-pattern Queries View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Wing-Kai Hon , Rahul Shah , Sharma V. Thankachan , Jeffrey Scott Vitter

ABSTRACT

Given a collection of string documents of total length n, which may be preprocessed, a fundamental task is to retrieve the most relevant documents for a given query. The query consists of a set of m patterns {P1, P2, ..., Pm}. To measure the relevance of a document with respect to the query patterns, we may define a score, such as the number of occurrences of these patterns in the document, or the proximity of the given patterns within the document. To control the size of the output, we may also specify a threshold (or a parameter K), so that our task is to report all the documents which match the query with score more than threshold (or respectively, the K documents with the highest scores). When the documents are strings (without word boundaries), the traditional inverted-index-based solutions may not be applicable. The single pattern retrieval case has been well-solved by [14,9]. When it comes to two or more patterns, the only non-trivial solution for proximity search and common document listing was given by [14], which took space. In this paper, we give the first linear space (and partly succinct) data structures, which can answer multi-pattern queries in time, where t is the number of output occurrences. In the particular case of two patterns, we achieve the bound of . We also show space-time trade-offs for our data structures. Our approach is based on a novel data structure called the weight-balanced wavelet tree, which may be of independent interest. More... »

PAGES

55-66

References to SciGraph publications

  • 2002-03-15. Augmenting Suffix Trees, with Applications in ALGORITHMS — ESA’ 98
  • 2009. Efficient Index for Retrieving Top-k Most Frequent Documents in STRING PROCESSING AND INFORMATION RETRIEVAL
  • 2009. Efficient Data Structures for the Orthogonal Range Successor Problem in COMPUTING AND COMBINATORICS
  • 2000. The LCA Problem Revisited in LATIN 2000: THEORETICAL INFORMATICS
  • 2010. Fast Set Intersection and Two-Patterns Matching in LATIN 2010: THEORETICAL INFORMATICS
  • 2007-12. Compressed Suffix Trees with Full Functionality in THEORY OF COMPUTING SYSTEMS
  • 2007. Space-Efficient Algorithms for Document Retrieval in COMBINATORIAL PATTERN MATCHING
  • Book

    TITLE

    String Processing and Information Retrieval

    ISBN

    978-3-642-16320-3
    978-3-642-16321-0

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-16321-0_6

    DOI

    http://dx.doi.org/10.1007/978-3-642-16321-0_6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006459853


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Tsing Hua University", 
              "id": "https://www.grid.ac/institutes/grid.38348.34", 
              "name": [
                "Department of CS, National Tsing Hua University, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hon", 
            "givenName": "Wing-Kai", 
            "id": "sg:person.07456324600.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07456324600.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Louisiana State University", 
              "id": "https://www.grid.ac/institutes/grid.64337.35", 
              "name": [
                "Department of CS, Louisiana State University, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shah", 
            "givenName": "Rahul", 
            "id": "sg:person.016536034313.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536034313.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Louisiana State University", 
              "id": "https://www.grid.ac/institutes/grid.64337.35", 
              "name": [
                "Department of CS, Louisiana State University, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thankachan", 
            "givenName": "Sharma V.", 
            "id": "sg:person.014270733416.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270733416.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Kansas", 
              "id": "https://www.grid.ac/institutes/grid.266515.3", 
              "name": [
                "Department of EECS, The University of Kansas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vitter", 
            "givenName": "Jeffrey Scott", 
            "id": "sg:person.0613677314.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613677314.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-68530-8_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008184855", 
              "https://doi.org/10.1007/3-540-68530-8_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68530-8_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008184855", 
              "https://doi.org/10.1007/3-540-68530-8_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-73437-6_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013715314", 
              "https://doi.org/10.1007/978-3-540-73437-6_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-73437-6_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013715314", 
              "https://doi.org/10.1007/978-3-540-73437-6_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-12200-2_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020957316", 
              "https://doi.org/10.1007/978-3-642-12200-2_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02882-3_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026954855", 
              "https://doi.org/10.1007/978-3-642-02882-3_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02882-3_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026954855", 
              "https://doi.org/10.1007/978-3-642-02882-3_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-7552(98)00110-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035913093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/10719839_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037071768", 
              "https://doi.org/10.1007/10719839_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/10719839_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037071768", 
              "https://doi.org/10.1007/10719839_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03784-9_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038892078", 
              "https://doi.org/10.1007/978-3-642-03784-9_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00224-006-1198-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039635416", 
              "https://doi.org/10.1007/s00224-006-1198-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tcs.2007.07.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042214506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1240233.1240243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042619365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ic.2008.12.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053602318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jda.2006.03.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053721372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0222058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0097539702402354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062879354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0097539799364092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/swat.1973.13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086215622"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "Given a collection of string documents of total length n, which may be preprocessed, a fundamental task is to retrieve the most relevant documents for a given query. The query consists of a set of m patterns {P1, P2, ..., Pm}. To measure the relevance of a document with respect to the query patterns, we may define a score, such as the number of occurrences of these patterns in the document, or the proximity of the given patterns within the document. To control the size of the output, we may also specify a threshold (or a parameter K), so that our task is to report all the documents which match the query with score more than threshold (or respectively, the K documents with the highest scores). When the documents are strings (without word boundaries), the traditional inverted-index-based solutions may not be applicable. The single pattern retrieval case has been well-solved by [14,9]. When it comes to two or more patterns, the only non-trivial solution for proximity search and common document listing was given by [14], which took space. In this paper, we give the first linear space (and partly succinct) data structures, which can answer multi-pattern queries in time, where t is the number of output occurrences. In the particular case of two patterns, we achieve the bound of . We also show space-time trade-offs for our data structures. Our approach is based on a novel data structure called the weight-balanced wavelet tree, which may be of independent interest.", 
        "editor": [
          {
            "familyName": "Chavez", 
            "givenName": "Edgar", 
            "type": "Person"
          }, 
          {
            "familyName": "Lonardi", 
            "givenName": "Stefano", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-16321-0_6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-16320-3", 
            "978-3-642-16321-0"
          ], 
          "name": "String Processing and Information Retrieval", 
          "type": "Book"
        }, 
        "name": "String Retrieval for Multi-pattern Queries", 
        "pagination": "55-66", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006459853"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-16321-0_6"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1ec52374ac09bf5047ddb6a71e24e4bc37866f859048a54fc8ccab58bba44e54"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-16321-0_6", 
          "https://app.dimensions.ai/details/publication/pub.1006459853"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72869_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-16321-0_6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16321-0_6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16321-0_6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16321-0_6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16321-0_6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-16321-0_6 schema:about anzsrc-for:08
    2 anzsrc-for:0804
    3 schema:author N5721b325f6b540a5841564a7330d0805
    4 schema:citation sg:pub.10.1007/10719839_9
    5 sg:pub.10.1007/3-540-68530-8_6
    6 sg:pub.10.1007/978-3-540-73437-6_22
    7 sg:pub.10.1007/978-3-642-02882-3_11
    8 sg:pub.10.1007/978-3-642-03784-9_18
    9 sg:pub.10.1007/978-3-642-12200-2_22
    10 sg:pub.10.1007/s00224-006-1198-x
    11 https://doi.org/10.1016/j.ic.2008.12.010
    12 https://doi.org/10.1016/j.jda.2006.03.011
    13 https://doi.org/10.1016/j.tcs.2007.07.013
    14 https://doi.org/10.1016/s0169-7552(98)00110-x
    15 https://doi.org/10.1109/swat.1973.13
    16 https://doi.org/10.1137/0222058
    17 https://doi.org/10.1137/s0097539702402354
    18 https://doi.org/10.1137/s0097539799364092
    19 https://doi.org/10.1145/1240233.1240243
    20 schema:datePublished 2010
    21 schema:datePublishedReg 2010-01-01
    22 schema:description Given a collection of string documents of total length n, which may be preprocessed, a fundamental task is to retrieve the most relevant documents for a given query. The query consists of a set of m patterns {P1, P2, ..., Pm}. To measure the relevance of a document with respect to the query patterns, we may define a score, such as the number of occurrences of these patterns in the document, or the proximity of the given patterns within the document. To control the size of the output, we may also specify a threshold (or a parameter K), so that our task is to report all the documents which match the query with score more than threshold (or respectively, the K documents with the highest scores). When the documents are strings (without word boundaries), the traditional inverted-index-based solutions may not be applicable. The single pattern retrieval case has been well-solved by [14,9]. When it comes to two or more patterns, the only non-trivial solution for proximity search and common document listing was given by [14], which took space. In this paper, we give the first linear space (and partly succinct) data structures, which can answer multi-pattern queries in time, where t is the number of output occurrences. In the particular case of two patterns, we achieve the bound of . We also show space-time trade-offs for our data structures. Our approach is based on a novel data structure called the weight-balanced wavelet tree, which may be of independent interest.
    23 schema:editor Ne59433507c8d4ea1b4dd0a269861714c
    24 schema:genre chapter
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf Nc336e31a00634279b04e606fb1f41fa1
    28 schema:name String Retrieval for Multi-pattern Queries
    29 schema:pagination 55-66
    30 schema:productId N6c1dc52394b24f92af6fb4a31bdab9ae
    31 Nb4a23110c7f44b6188100975601735a6
    32 Nb85adea3b6b2468cb8be0e9803e5ef88
    33 schema:publisher Ndbdf6330fb6c4defb35a275eb17d2915
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006459853
    35 https://doi.org/10.1007/978-3-642-16321-0_6
    36 schema:sdDatePublished 2019-04-16T08:33
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N0f642074a564449898a27d9bb2d6e889
    39 schema:url https://link.springer.com/10.1007%2F978-3-642-16321-0_6
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset chapters
    42 rdf:type schema:Chapter
    43 N0f642074a564449898a27d9bb2d6e889 schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N5721b325f6b540a5841564a7330d0805 rdf:first sg:person.07456324600.70
    46 rdf:rest Nc90033bb78884fd7b8421eb97425c5d6
    47 N5d104a76244444b6afddff77fd86d5f2 rdf:first sg:person.0613677314.28
    48 rdf:rest rdf:nil
    49 N6bf9614657da4890be0db1055216fc48 schema:familyName Chavez
    50 schema:givenName Edgar
    51 rdf:type schema:Person
    52 N6c1dc52394b24f92af6fb4a31bdab9ae schema:name dimensions_id
    53 schema:value pub.1006459853
    54 rdf:type schema:PropertyValue
    55 N98f2c282ad7945eda2deb064757a3dec rdf:first sg:person.014270733416.17
    56 rdf:rest N5d104a76244444b6afddff77fd86d5f2
    57 Na262d8d36e1340e880b607446d7dedc1 rdf:first Nf92e813389ae4de4a85ba74aca45b93b
    58 rdf:rest rdf:nil
    59 Nb4a23110c7f44b6188100975601735a6 schema:name readcube_id
    60 schema:value 1ec52374ac09bf5047ddb6a71e24e4bc37866f859048a54fc8ccab58bba44e54
    61 rdf:type schema:PropertyValue
    62 Nb85adea3b6b2468cb8be0e9803e5ef88 schema:name doi
    63 schema:value 10.1007/978-3-642-16321-0_6
    64 rdf:type schema:PropertyValue
    65 Nc336e31a00634279b04e606fb1f41fa1 schema:isbn 978-3-642-16320-3
    66 978-3-642-16321-0
    67 schema:name String Processing and Information Retrieval
    68 rdf:type schema:Book
    69 Nc90033bb78884fd7b8421eb97425c5d6 rdf:first sg:person.016536034313.19
    70 rdf:rest N98f2c282ad7945eda2deb064757a3dec
    71 Ndbdf6330fb6c4defb35a275eb17d2915 schema:location Berlin, Heidelberg
    72 schema:name Springer Berlin Heidelberg
    73 rdf:type schema:Organisation
    74 Ne59433507c8d4ea1b4dd0a269861714c rdf:first N6bf9614657da4890be0db1055216fc48
    75 rdf:rest Na262d8d36e1340e880b607446d7dedc1
    76 Nf92e813389ae4de4a85ba74aca45b93b schema:familyName Lonardi
    77 schema:givenName Stefano
    78 rdf:type schema:Person
    79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Information and Computing Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Data Format
    84 rdf:type schema:DefinedTerm
    85 sg:person.014270733416.17 schema:affiliation https://www.grid.ac/institutes/grid.64337.35
    86 schema:familyName Thankachan
    87 schema:givenName Sharma V.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270733416.17
    89 rdf:type schema:Person
    90 sg:person.016536034313.19 schema:affiliation https://www.grid.ac/institutes/grid.64337.35
    91 schema:familyName Shah
    92 schema:givenName Rahul
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536034313.19
    94 rdf:type schema:Person
    95 sg:person.0613677314.28 schema:affiliation https://www.grid.ac/institutes/grid.266515.3
    96 schema:familyName Vitter
    97 schema:givenName Jeffrey Scott
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613677314.28
    99 rdf:type schema:Person
    100 sg:person.07456324600.70 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
    101 schema:familyName Hon
    102 schema:givenName Wing-Kai
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07456324600.70
    104 rdf:type schema:Person
    105 sg:pub.10.1007/10719839_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037071768
    106 https://doi.org/10.1007/10719839_9
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/3-540-68530-8_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008184855
    109 https://doi.org/10.1007/3-540-68530-8_6
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/978-3-540-73437-6_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013715314
    112 https://doi.org/10.1007/978-3-540-73437-6_22
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/978-3-642-02882-3_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026954855
    115 https://doi.org/10.1007/978-3-642-02882-3_11
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/978-3-642-03784-9_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038892078
    118 https://doi.org/10.1007/978-3-642-03784-9_18
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-3-642-12200-2_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020957316
    121 https://doi.org/10.1007/978-3-642-12200-2_22
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s00224-006-1198-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039635416
    124 https://doi.org/10.1007/s00224-006-1198-x
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.ic.2008.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053602318
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.jda.2006.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053721372
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.tcs.2007.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042214506
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/s0169-7552(98)00110-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035913093
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/swat.1973.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086215622
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1137/0222058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842461
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1137/s0097539702402354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879354
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1137/s0097539799364092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880361
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1145/1240233.1240243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042619365
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.266515.3 schema:alternateName University of Kansas
    145 schema:name Department of EECS, The University of Kansas, USA
    146 rdf:type schema:Organization
    147 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
    148 schema:name Department of CS, National Tsing Hua University, Taiwan
    149 rdf:type schema:Organization
    150 https://www.grid.ac/institutes/grid.64337.35 schema:alternateName Louisiana State University
    151 schema:name Department of CS, Louisiana State University, USA
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...