Sequence-Based Pronunciation Modeling Using a Noisy-Channel Approach View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Hansjörg Hofmann , Sakriani Sakti , Ryosuke Isotani , Hisashi Kawai , Satoshi Nakamura , Wolfgang Minker

ABSTRACT

Previous approaches to spontaneous speech recognition address the multiple pronunciation problem by modeling the alteration of the pronunciation on a phoneme to phoneme level. However, the phonetic transformation effects induced by the pronunciation of the whole sentence are not considered yet. In this paper we attempt to model the sequence-based pronunciation variation using a noisy-channel approach where the spontaneous phoneme sequence is considered as a “noisy” string and the goal is to recover the “clean” string of the word sequence. Hereby, the whole word sequence and its effect on the alternation of the phonemes will be taken into consideration. Moreover, the system not only learns the phoneme transformation but also the mapping from the phoneme to the word directly. In this preliminary study, first the phonemes will be recognized with the present recognition system and afterwards the pronunciation variation model based on the noisy-channel approach will map from the phoneme to the word level. Our experiments use Switchboard as spontaneous speech corpus. The results show that the proposed method improves the word accuracy consistently over the conventional recognition system. The best system achieves up to 38.9% relative improvement to the baseline speech recognition. More... »

PAGES

156-162

Book

TITLE

Spoken Dialogue Systems for Ambient Environments

ISBN

978-3-642-16201-5
978-3-642-16202-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-16202-2_15

DOI

http://dx.doi.org/10.1007/978-3-642-16202-2_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019352511


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "National Institute of Information and Communications Technology, Japan", 
            "University of Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofmann", 
        "givenName": "Hansj\u00f6rg", 
        "id": "sg:person.012652041467.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012652041467.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Information and Communications Technology", 
          "id": "https://www.grid.ac/institutes/grid.28312.3a", 
          "name": [
            "National Institute of Information and Communications Technology, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakti", 
        "givenName": "Sakriani", 
        "id": "sg:person.016361461676.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016361461676.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Information and Communications Technology", 
          "id": "https://www.grid.ac/institutes/grid.28312.3a", 
          "name": [
            "National Institute of Information and Communications Technology, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Isotani", 
        "givenName": "Ryosuke", 
        "id": "sg:person.016672306663.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016672306663.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Information and Communications Technology", 
          "id": "https://www.grid.ac/institutes/grid.28312.3a", 
          "name": [
            "National Institute of Information and Communications Technology, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawai", 
        "givenName": "Hisashi", 
        "id": "sg:person.013737440203.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013737440203.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Information and Communications Technology", 
          "id": "https://www.grid.ac/institutes/grid.28312.3a", 
          "name": [
            "National Institute of Information and Communications Technology, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Satoshi", 
        "id": "sg:person.014433216155.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014433216155.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "University of Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minker", 
        "givenName": "Wolfgang", 
        "id": "sg:person.013704564607.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013704564607.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3115/1075527.1075614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001362849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1075671.1075675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012939546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2006.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013243017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1075812.1075824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018063358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6393(99)00037-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033057249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089120103321337421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042637788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada461156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091781489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isuc.2008.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094377563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1613984.1614005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099150924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1220175.1220242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1220175.1220242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1073083.1073133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099239628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1073083.1073133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099239628"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Previous approaches to spontaneous speech recognition address the multiple pronunciation problem by modeling the alteration of the pronunciation on a phoneme to phoneme level. However, the phonetic transformation effects induced by the pronunciation of the whole sentence are not considered yet. In this paper we attempt to model the sequence-based pronunciation variation using a noisy-channel approach where the spontaneous phoneme sequence is considered as a \u201cnoisy\u201d string and the goal is to recover the \u201cclean\u201d string of the word sequence. Hereby, the whole word sequence and its effect on the alternation of the phonemes will be taken into consideration. Moreover, the system not only learns the phoneme transformation but also the mapping from the phoneme to the word directly. In this preliminary study, first the phonemes will be recognized with the present recognition system and afterwards the pronunciation variation model based on the noisy-channel approach will map from the phoneme to the word level. Our experiments use Switchboard as spontaneous speech corpus. The results show that the proposed method improves the word accuracy consistently over the conventional recognition system. The best system achieves up to 38.9% relative improvement to the baseline speech recognition.", 
    "editor": [
      {
        "familyName": "Lee", 
        "givenName": "Gary Geunbae", 
        "type": "Person"
      }, 
      {
        "familyName": "Mariani", 
        "givenName": "Joseph", 
        "type": "Person"
      }, 
      {
        "familyName": "Minker", 
        "givenName": "Wolfgang", 
        "type": "Person"
      }, 
      {
        "familyName": "Nakamura", 
        "givenName": "Satoshi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-16202-2_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-16201-5", 
        "978-3-642-16202-2"
      ], 
      "name": "Spoken Dialogue Systems for Ambient Environments", 
      "type": "Book"
    }, 
    "name": "Sequence-Based Pronunciation Modeling Using a Noisy-Channel Approach", 
    "pagination": "156-162", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019352511"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-16202-2_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5c3528d8ea9cd9643b6f5047b9fdfd5c1ad14fc957f319a7f0685ab7ccefae9e"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-16202-2_15", 
      "https://app.dimensions.ai/details/publication/pub.1019352511"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70058_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-16202-2_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16202-2_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16202-2_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16202-2_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-16202-2_15'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-16202-2_15 schema:about anzsrc-for:17
2 anzsrc-for:1702
3 schema:author N25ef47c160bc44a98837a9f5ea39b097
4 schema:citation https://doi.org/10.1016/j.specom.2006.10.007
5 https://doi.org/10.1016/s0167-6393(99)00037-0
6 https://doi.org/10.1109/isuc.2008.33
7 https://doi.org/10.1162/089120103321337421
8 https://doi.org/10.21236/ada461156
9 https://doi.org/10.3115/1073083.1073133
10 https://doi.org/10.3115/1075527.1075614
11 https://doi.org/10.3115/1075671.1075675
12 https://doi.org/10.3115/1075812.1075824
13 https://doi.org/10.3115/1220175.1220242
14 https://doi.org/10.3115/1613984.1614005
15 schema:datePublished 2010
16 schema:datePublishedReg 2010-01-01
17 schema:description Previous approaches to spontaneous speech recognition address the multiple pronunciation problem by modeling the alteration of the pronunciation on a phoneme to phoneme level. However, the phonetic transformation effects induced by the pronunciation of the whole sentence are not considered yet. In this paper we attempt to model the sequence-based pronunciation variation using a noisy-channel approach where the spontaneous phoneme sequence is considered as a “noisy” string and the goal is to recover the “clean” string of the word sequence. Hereby, the whole word sequence and its effect on the alternation of the phonemes will be taken into consideration. Moreover, the system not only learns the phoneme transformation but also the mapping from the phoneme to the word directly. In this preliminary study, first the phonemes will be recognized with the present recognition system and afterwards the pronunciation variation model based on the noisy-channel approach will map from the phoneme to the word level. Our experiments use Switchboard as spontaneous speech corpus. The results show that the proposed method improves the word accuracy consistently over the conventional recognition system. The best system achieves up to 38.9% relative improvement to the baseline speech recognition.
18 schema:editor N92a2efec165549c5ae90c588e239908a
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N2fb3e6e9bfdc410e8ab0f1676bd329ac
23 schema:name Sequence-Based Pronunciation Modeling Using a Noisy-Channel Approach
24 schema:pagination 156-162
25 schema:productId N04dbcab731514292b32ef73e6dbd62d6
26 N808528f5b5d3439f9b4ac61e4a291e93
27 Nf7c61bcbacb2466597a3044b93c00115
28 schema:publisher Nbaeccc773de14bd19a047db26011440b
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019352511
30 https://doi.org/10.1007/978-3-642-16202-2_15
31 schema:sdDatePublished 2019-04-16T08:26
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N6dd9a2645839455383fe06df30218123
34 schema:url https://link.springer.com/10.1007%2F978-3-642-16202-2_15
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N04dbcab731514292b32ef73e6dbd62d6 schema:name doi
39 schema:value 10.1007/978-3-642-16202-2_15
40 rdf:type schema:PropertyValue
41 N0550f315b5d342ad90e63a9df722d878 rdf:first sg:person.016672306663.73
42 rdf:rest N0f97841104fa41699c8f509d58969376
43 N09b34d39d5a84bafbaedc432fd6d38ab schema:familyName Lee
44 schema:givenName Gary Geunbae
45 rdf:type schema:Person
46 N0d1220909d704a8baf702c453944eaee rdf:first Nb0727242c6f74d1dbc8b51d2afcda545
47 rdf:rest N0edddfb0c73842168f4fb6dd29681776
48 N0edddfb0c73842168f4fb6dd29681776 rdf:first N2e125d5d340845e8b15e60435afc590b
49 rdf:rest N3b405e94b2794025bc76ef4b0baef89f
50 N0f97841104fa41699c8f509d58969376 rdf:first sg:person.013737440203.78
51 rdf:rest N735585af79704f7dae3689b16ab36b41
52 N23e6f8bc414a44a3853de1e57a4abb33 rdf:first sg:person.013704564607.67
53 rdf:rest rdf:nil
54 N25ef47c160bc44a98837a9f5ea39b097 rdf:first sg:person.012652041467.12
55 rdf:rest Nd357de4aaa4443b581f3025cb40db817
56 N2e125d5d340845e8b15e60435afc590b schema:familyName Minker
57 schema:givenName Wolfgang
58 rdf:type schema:Person
59 N2fb3e6e9bfdc410e8ab0f1676bd329ac schema:isbn 978-3-642-16201-5
60 978-3-642-16202-2
61 schema:name Spoken Dialogue Systems for Ambient Environments
62 rdf:type schema:Book
63 N3b405e94b2794025bc76ef4b0baef89f rdf:first N5477591415e84255a9a666e003468c09
64 rdf:rest rdf:nil
65 N5477591415e84255a9a666e003468c09 schema:familyName Nakamura
66 schema:givenName Satoshi
67 rdf:type schema:Person
68 N6dd9a2645839455383fe06df30218123 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N735585af79704f7dae3689b16ab36b41 rdf:first sg:person.014433216155.64
71 rdf:rest N23e6f8bc414a44a3853de1e57a4abb33
72 N808528f5b5d3439f9b4ac61e4a291e93 schema:name readcube_id
73 schema:value 5c3528d8ea9cd9643b6f5047b9fdfd5c1ad14fc957f319a7f0685ab7ccefae9e
74 rdf:type schema:PropertyValue
75 N92a2efec165549c5ae90c588e239908a rdf:first N09b34d39d5a84bafbaedc432fd6d38ab
76 rdf:rest N0d1220909d704a8baf702c453944eaee
77 Nb0727242c6f74d1dbc8b51d2afcda545 schema:familyName Mariani
78 schema:givenName Joseph
79 rdf:type schema:Person
80 Nbaeccc773de14bd19a047db26011440b schema:location Berlin, Heidelberg
81 schema:name Springer Berlin Heidelberg
82 rdf:type schema:Organisation
83 Nd357de4aaa4443b581f3025cb40db817 rdf:first sg:person.016361461676.33
84 rdf:rest N0550f315b5d342ad90e63a9df722d878
85 Nf7c61bcbacb2466597a3044b93c00115 schema:name dimensions_id
86 schema:value pub.1019352511
87 rdf:type schema:PropertyValue
88 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
89 schema:name Psychology and Cognitive Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
92 schema:name Cognitive Sciences
93 rdf:type schema:DefinedTerm
94 sg:person.012652041467.12 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
95 schema:familyName Hofmann
96 schema:givenName Hansjörg
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012652041467.12
98 rdf:type schema:Person
99 sg:person.013704564607.67 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
100 schema:familyName Minker
101 schema:givenName Wolfgang
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013704564607.67
103 rdf:type schema:Person
104 sg:person.013737440203.78 schema:affiliation https://www.grid.ac/institutes/grid.28312.3a
105 schema:familyName Kawai
106 schema:givenName Hisashi
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013737440203.78
108 rdf:type schema:Person
109 sg:person.014433216155.64 schema:affiliation https://www.grid.ac/institutes/grid.28312.3a
110 schema:familyName Nakamura
111 schema:givenName Satoshi
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014433216155.64
113 rdf:type schema:Person
114 sg:person.016361461676.33 schema:affiliation https://www.grid.ac/institutes/grid.28312.3a
115 schema:familyName Sakti
116 schema:givenName Sakriani
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016361461676.33
118 rdf:type schema:Person
119 sg:person.016672306663.73 schema:affiliation https://www.grid.ac/institutes/grid.28312.3a
120 schema:familyName Isotani
121 schema:givenName Ryosuke
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016672306663.73
123 rdf:type schema:Person
124 https://doi.org/10.1016/j.specom.2006.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013243017
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0167-6393(99)00037-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033057249
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/isuc.2008.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094377563
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1162/089120103321337421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042637788
131 rdf:type schema:CreativeWork
132 https://doi.org/10.21236/ada461156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091781489
133 rdf:type schema:CreativeWork
134 https://doi.org/10.3115/1073083.1073133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099239628
135 rdf:type schema:CreativeWork
136 https://doi.org/10.3115/1075527.1075614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001362849
137 rdf:type schema:CreativeWork
138 https://doi.org/10.3115/1075671.1075675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012939546
139 rdf:type schema:CreativeWork
140 https://doi.org/10.3115/1075812.1075824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018063358
141 rdf:type schema:CreativeWork
142 https://doi.org/10.3115/1220175.1220242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099221995
143 rdf:type schema:CreativeWork
144 https://doi.org/10.3115/1613984.1614005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099150924
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.28312.3a schema:alternateName National Institute of Information and Communications Technology
147 schema:name National Institute of Information and Communications Technology, Japan
148 rdf:type schema:Organization
149 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
150 schema:name National Institute of Information and Communications Technology, Japan
151 University of Ulm, Germany
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...