Single Microphone Blind Audio Source Separation Using EM-Kalman Filter and Short+Long Term AR Modeling View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Siouar Bensaid , Antony Schutz , Dirk T. M. Slock

ABSTRACT

Blind Source Separation (BSS) arises in a variety of fields in speech processing such as speech enhancement, speakers diarization and identification. Generally, methods for BSS consider several observations of the same recording. Single microphone analysis is the worst underdetermined case, but, it is also the more realistic one. In this article, the autoregressive structure (short term prediction) and the periodic signature (long term prediction) of voiced speech signal are modeled and a linear state space model with unknown parameters is derived. The Expectation Maximization (EM) algorithm is used to estimate these unknown parameters and therefore help source separation. More... »

PAGES

106-113

Book

TITLE

Latent Variable Analysis and Signal Separation

ISBN

978-3-642-15994-7
978-3-642-15995-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15995-4_14

DOI

http://dx.doi.org/10.1007/978-3-642-15995-4_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029719040


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "EURECOM, 2229 route des Cr\u00eates, B.P. 193, 06904, Sophia Antipolis Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "EURECOM, 2229 route des Cr\u00eates, B.P. 193, 06904, Sophia Antipolis Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bensaid", 
        "givenName": "Siouar", 
        "id": "sg:person.01342376061.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342376061.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EURECOM, 2229 route des Cr\u00eates, B.P. 193, 06904, Sophia Antipolis Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "EURECOM, 2229 route des Cr\u00eates, B.P. 193, 06904, Sophia Antipolis Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schutz", 
        "givenName": "Antony", 
        "id": "sg:person.010234147401.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010234147401.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EURECOM, 2229 route des Cr\u00eates, B.P. 193, 06904, Sophia Antipolis Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "EURECOM, 2229 route des Cr\u00eates, B.P. 193, 06904, Sophia Antipolis Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slock", 
        "givenName": "Dirk T. M.", 
        "id": "sg:person.015046645205.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015046645205.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Blind Source Separation (BSS) arises in a variety of fields in speech processing such as speech enhancement, speakers diarization and identification. Generally, methods for BSS consider several observations of the same recording. Single microphone analysis is the worst underdetermined case, but, it is also the more realistic one. In this article, the autoregressive structure (short term prediction) and the periodic signature (long term prediction) of voiced speech signal are modeled and a linear state space model with unknown parameters is derived. The Expectation Maximization (EM) algorithm is used to estimate these unknown parameters and therefore help source separation.", 
    "editor": [
      {
        "familyName": "Vigneron", 
        "givenName": "Vincent", 
        "type": "Person"
      }, 
      {
        "familyName": "Zarzoso", 
        "givenName": "Vicente", 
        "type": "Person"
      }, 
      {
        "familyName": "Moreau", 
        "givenName": "Eric", 
        "type": "Person"
      }, 
      {
        "familyName": "Gribonval", 
        "givenName": "R\u00e9mi", 
        "type": "Person"
      }, 
      {
        "familyName": "Vincent", 
        "givenName": "Emmanuel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15995-4_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15994-7", 
        "978-3-642-15995-4"
      ], 
      "name": "Latent Variable Analysis and Signal Separation", 
      "type": "Book"
    }, 
    "keywords": [
      "blind source separation", 
      "source separation", 
      "linear state space model", 
      "state space model", 
      "underdetermined case", 
      "unknown parameters", 
      "AR modeling", 
      "speech enhancement", 
      "space model", 
      "variety of fields", 
      "separation", 
      "speech signal", 
      "parameters", 
      "filter", 
      "modeling", 
      "speaker diarization", 
      "field", 
      "enhancement", 
      "periodic signature", 
      "structure", 
      "signals", 
      "method", 
      "model", 
      "expectation maximization algorithm", 
      "algorithm", 
      "maximization algorithm", 
      "autoregressive structure", 
      "diarization", 
      "observations", 
      "analysis", 
      "same recording", 
      "cases", 
      "recordings", 
      "variety", 
      "signatures", 
      "article", 
      "identification", 
      "speech", 
      "Single microphone analysis", 
      "microphone analysis", 
      "worst underdetermined case", 
      "Single Microphone Blind Audio Source Separation Using EM-Kalman Filter", 
      "Microphone Blind Audio Source Separation Using EM-Kalman Filter", 
      "Blind Audio Source Separation Using EM-Kalman Filter", 
      "Audio Source Separation Using EM-Kalman Filter", 
      "Source Separation Using EM-Kalman Filter", 
      "Separation Using EM-Kalman Filter", 
      "Using EM-Kalman Filter", 
      "EM-Kalman Filter", 
      "Term AR Modeling"
    ], 
    "name": "Single Microphone Blind Audio Source Separation Using EM-Kalman Filter and Short+Long Term AR Modeling", 
    "pagination": "106-113", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029719040"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15995-4_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15995-4_14", 
      "https://app.dimensions.ai/details/publication/pub.1029719040"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_9.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15995-4_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15995-4_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15995-4_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15995-4_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15995-4_14'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15995-4_14 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N64132875c2da482084158d2bab65a4e3
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description Blind Source Separation (BSS) arises in a variety of fields in speech processing such as speech enhancement, speakers diarization and identification. Generally, methods for BSS consider several observations of the same recording. Single microphone analysis is the worst underdetermined case, but, it is also the more realistic one. In this article, the autoregressive structure (short term prediction) and the periodic signature (long term prediction) of voiced speech signal are modeled and a linear state space model with unknown parameters is derived. The Expectation Maximization (EM) algorithm is used to estimate these unknown parameters and therefore help source separation.
7 schema:editor N4c68b33ffa894fa483bcdb32efd74ab9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4f349ebba9ac418184699fd006be6387
12 schema:keywords AR modeling
13 Audio Source Separation Using EM-Kalman Filter
14 Blind Audio Source Separation Using EM-Kalman Filter
15 EM-Kalman Filter
16 Microphone Blind Audio Source Separation Using EM-Kalman Filter
17 Separation Using EM-Kalman Filter
18 Single Microphone Blind Audio Source Separation Using EM-Kalman Filter
19 Single microphone analysis
20 Source Separation Using EM-Kalman Filter
21 Term AR Modeling
22 Using EM-Kalman Filter
23 algorithm
24 analysis
25 article
26 autoregressive structure
27 blind source separation
28 cases
29 diarization
30 enhancement
31 expectation maximization algorithm
32 field
33 filter
34 identification
35 linear state space model
36 maximization algorithm
37 method
38 microphone analysis
39 model
40 modeling
41 observations
42 parameters
43 periodic signature
44 recordings
45 same recording
46 separation
47 signals
48 signatures
49 source separation
50 space model
51 speaker diarization
52 speech
53 speech enhancement
54 speech signal
55 state space model
56 structure
57 underdetermined case
58 unknown parameters
59 variety
60 variety of fields
61 worst underdetermined case
62 schema:name Single Microphone Blind Audio Source Separation Using EM-Kalman Filter and Short+Long Term AR Modeling
63 schema:pagination 106-113
64 schema:productId N95543733898d4f49971f74276926efe8
65 N9ee4cc9c50984083924d2a09c71d1779
66 schema:publisher N7713e7fd3483431c9ebdf06381fe2c07
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029719040
68 https://doi.org/10.1007/978-3-642-15995-4_14
69 schema:sdDatePublished 2022-01-01T19:28
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N1406692b483f4f9da45d70de98971187
72 schema:url https://doi.org/10.1007/978-3-642-15995-4_14
73 sgo:license sg:explorer/license/
74 sgo:sdDataset chapters
75 rdf:type schema:Chapter
76 N025dc2f3d45644588293bed4b17bccfe rdf:first Ne61d3afa51964f32ad4b3526400dd72a
77 rdf:rest rdf:nil
78 N0370ff0be9c24253896ab03e411107ae schema:familyName Vigneron
79 schema:givenName Vincent
80 rdf:type schema:Person
81 N1406692b483f4f9da45d70de98971187 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N4c68b33ffa894fa483bcdb32efd74ab9 rdf:first N0370ff0be9c24253896ab03e411107ae
84 rdf:rest N6be9f7e145ab4c99a663cd63f7babba9
85 N4f349ebba9ac418184699fd006be6387 schema:isbn 978-3-642-15994-7
86 978-3-642-15995-4
87 schema:name Latent Variable Analysis and Signal Separation
88 rdf:type schema:Book
89 N4ffc0d11313e4036b8123e980ca20e59 schema:familyName Gribonval
90 schema:givenName Rémi
91 rdf:type schema:Person
92 N64132875c2da482084158d2bab65a4e3 rdf:first sg:person.01342376061.13
93 rdf:rest N6bf498a6cb214d56b3eec7c484dfbf8a
94 N6be9f7e145ab4c99a663cd63f7babba9 rdf:first Na31c3754fd234523a91059343342ed5b
95 rdf:rest Nc68914f325424980b5986ed2768b7d39
96 N6bf498a6cb214d56b3eec7c484dfbf8a rdf:first sg:person.010234147401.22
97 rdf:rest Ne0f8e8acdd7c49c3a13fb2228755eab5
98 N7713e7fd3483431c9ebdf06381fe2c07 schema:name Springer Nature
99 rdf:type schema:Organisation
100 N7c805ad1d5c14d63a9f190b08ef907b9 schema:familyName Moreau
101 schema:givenName Eric
102 rdf:type schema:Person
103 N95543733898d4f49971f74276926efe8 schema:name dimensions_id
104 schema:value pub.1029719040
105 rdf:type schema:PropertyValue
106 N9ee4cc9c50984083924d2a09c71d1779 schema:name doi
107 schema:value 10.1007/978-3-642-15995-4_14
108 rdf:type schema:PropertyValue
109 Na31c3754fd234523a91059343342ed5b schema:familyName Zarzoso
110 schema:givenName Vicente
111 rdf:type schema:Person
112 Na59b8d59874b474eb49aaad54ad70a22 rdf:first N4ffc0d11313e4036b8123e980ca20e59
113 rdf:rest N025dc2f3d45644588293bed4b17bccfe
114 Nc68914f325424980b5986ed2768b7d39 rdf:first N7c805ad1d5c14d63a9f190b08ef907b9
115 rdf:rest Na59b8d59874b474eb49aaad54ad70a22
116 Ne0f8e8acdd7c49c3a13fb2228755eab5 rdf:first sg:person.015046645205.37
117 rdf:rest rdf:nil
118 Ne61d3afa51964f32ad4b3526400dd72a schema:familyName Vincent
119 schema:givenName Emmanuel
120 rdf:type schema:Person
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
125 schema:name Electrical and Electronic Engineering
126 rdf:type schema:DefinedTerm
127 sg:person.010234147401.22 schema:affiliation grid-institutes:grid.28848.3e
128 schema:familyName Schutz
129 schema:givenName Antony
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010234147401.22
131 rdf:type schema:Person
132 sg:person.01342376061.13 schema:affiliation grid-institutes:grid.28848.3e
133 schema:familyName Bensaid
134 schema:givenName Siouar
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342376061.13
136 rdf:type schema:Person
137 sg:person.015046645205.37 schema:affiliation grid-institutes:grid.28848.3e
138 schema:familyName Slock
139 schema:givenName Dirk T. M.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015046645205.37
141 rdf:type schema:Person
142 grid-institutes:grid.28848.3e schema:alternateName EURECOM, 2229 route des Crêtes, B.P. 193, 06904, Sophia Antipolis Cedex, France
143 schema:name EURECOM, 2229 route des Crêtes, B.P. 193, 06904, Sophia Antipolis Cedex, France
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...