Fast Automatic Detection of Calcified Coronary Lesions in 3D Cardiac CT Images View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Sushil Mittal , Yefeng Zheng , Bogdan Georgescu , Fernando Vega-Higuera , Shaohua Kevin Zhou , Peter Meer , Dorin Comaniciu

ABSTRACT

Even with the recent advances in multidetector computed tomography (MDCT) imaging techniques, detection of calcified coronary lesions remains a highly tedious task. Noise, blooming and motion artifacts etc. add to its complication. We propose a novel learning-based, fully automatic algorithm for detection of calcified lesions in contrast-enhanced CT data. We compare and evaluate the performance of two supervised learning methods. Both these methods use rotation invariant features that are extracted along the centerline of the coronary. Our approach is quite robust to the estimates of the centerline and works well in practice. We are able to achieve average detection times of 0.67 and 0.82 seconds per volume using the two methods. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15948-0_1

DOI

http://dx.doi.org/10.1007/978-3-642-15948-0_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011259208


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Electrical and Computer Engineering Department, Rutgers University, USA", 
            "Siemens Corporate Research, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mittal", 
        "givenName": "Sushil", 
        "id": "sg:person.01016701272.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016701272.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yefeng", 
        "id": "sg:person.0767211426.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767211426.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computed Tomography, Siemens Healthcare, Germany", 
          "id": "http://www.grid.ac/institutes/grid.481749.7", 
          "name": [
            "Computed Tomography, Siemens Healthcare, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vega-Higuera", 
        "givenName": "Fernando", 
        "id": "sg:person.0627433214.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627433214.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Shaohua Kevin", 
        "id": "sg:person.01372425362.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrical and Computer Engineering Department, Rutgers University, USA", 
          "id": "http://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Electrical and Computer Engineering Department, Rutgers University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meer", 
        "givenName": "Peter", 
        "id": "sg:person.01302754400.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302754400.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Even with the recent advances in multidetector computed tomography (MDCT) imaging techniques, detection of calcified coronary lesions remains a highly tedious task. Noise, blooming and motion artifacts etc. add to its complication. We propose a novel learning-based, fully automatic algorithm for detection of calcified lesions in contrast-enhanced CT data. We compare and evaluate the performance of two supervised learning methods. Both these methods use rotation invariant features that are extracted along the centerline of the coronary. Our approach is quite robust to the estimates of the centerline and works well in practice. We are able to achieve average detection times of 0.67 and 0.82 seconds per volume using the two methods.", 
    "editor": [
      {
        "familyName": "Wang", 
        "givenName": "Fei", 
        "type": "Person"
      }, 
      {
        "familyName": "Yan", 
        "givenName": "Pingkun", 
        "type": "Person"
      }, 
      {
        "familyName": "Suzuki", 
        "givenName": "Kenji", 
        "type": "Person"
      }, 
      {
        "familyName": "Shen", 
        "givenName": "Dinggang", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15948-0_1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15947-3", 
        "978-3-642-15948-0"
      ], 
      "name": "Machine Learning in Medical Imaging", 
      "type": "Book"
    }, 
    "keywords": [
      "fast automatic detection", 
      "supervised learning method", 
      "rotation invariant features", 
      "cardiac CT images", 
      "average detection time", 
      "tedious task", 
      "automatic detection", 
      "invariant features", 
      "learning method", 
      "automatic algorithm", 
      "CT data", 
      "detection time", 
      "CT images", 
      "motion artifacts", 
      "contrast-enhanced CT data", 
      "tomography (CT) imaging techniques", 
      "algorithm", 
      "detection", 
      "task", 
      "images", 
      "method", 
      "artifacts", 
      "noise", 
      "performance", 
      "recent advances", 
      "centerline", 
      "features", 
      "technique", 
      "seconds", 
      "imaging techniques", 
      "advances", 
      "data", 
      "time", 
      "practice", 
      "estimates", 
      "volume", 
      "blooming", 
      "calcified coronary lesions", 
      "coronary lesions", 
      "calcified lesions", 
      "lesions", 
      "multidetector", 
      "complications", 
      "coronaries", 
      "approach"
    ], 
    "name": "Fast Automatic Detection of Calcified Coronary Lesions in 3D Cardiac CT Images", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011259208"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15948-0_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15948-0_1", 
      "https://app.dimensions.ai/details/publication/pub.1011259208"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_71.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15948-0_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15948-0_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15948-0_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15948-0_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15948-0_1'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      23 PREDICATES      71 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15948-0_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3632065989d7480ba42fd8642366d26e
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description Even with the recent advances in multidetector computed tomography (MDCT) imaging techniques, detection of calcified coronary lesions remains a highly tedious task. Noise, blooming and motion artifacts etc. add to its complication. We propose a novel learning-based, fully automatic algorithm for detection of calcified lesions in contrast-enhanced CT data. We compare and evaluate the performance of two supervised learning methods. Both these methods use rotation invariant features that are extracted along the centerline of the coronary. Our approach is quite robust to the estimates of the centerline and works well in practice. We are able to achieve average detection times of 0.67 and 0.82 seconds per volume using the two methods.
7 schema:editor N5e4c20b256ad45e387f18b4b4788741f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N66432a396a594c6e8ef05468ae3b09c2
12 schema:keywords CT data
13 CT images
14 advances
15 algorithm
16 approach
17 artifacts
18 automatic algorithm
19 automatic detection
20 average detection time
21 blooming
22 calcified coronary lesions
23 calcified lesions
24 cardiac CT images
25 centerline
26 complications
27 contrast-enhanced CT data
28 coronaries
29 coronary lesions
30 data
31 detection
32 detection time
33 estimates
34 fast automatic detection
35 features
36 images
37 imaging techniques
38 invariant features
39 learning method
40 lesions
41 method
42 motion artifacts
43 multidetector
44 noise
45 performance
46 practice
47 recent advances
48 rotation invariant features
49 seconds
50 supervised learning method
51 task
52 technique
53 tedious task
54 time
55 tomography (CT) imaging techniques
56 volume
57 schema:name Fast Automatic Detection of Calcified Coronary Lesions in 3D Cardiac CT Images
58 schema:pagination 1-9
59 schema:productId N4c6169985a404354b9fcd351b72afd84
60 Ne6381d4a80564df596636eea9d2f482b
61 schema:publisher Nd0474307560b420a9bb39f7812b61be0
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011259208
63 https://doi.org/10.1007/978-3-642-15948-0_1
64 schema:sdDatePublished 2022-01-01T19:27
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N7625a5e7ff4440b18085624575cd1211
67 schema:url https://doi.org/10.1007/978-3-642-15948-0_1
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N0e5a221e8ed3442f8928a6a70798cb17 rdf:first N2f29ddda521e4629b9f40fd45e203d8d
72 rdf:rest rdf:nil
73 N1280740049a84d70bcdefbc1354eae46 rdf:first sg:person.01066111014.77
74 rdf:rest rdf:nil
75 N1b42dce73dbc40bbabb964f14d84b381 schema:familyName Wang
76 schema:givenName Fei
77 rdf:type schema:Person
78 N20efe8aaf9074c40b6beef949edbab43 schema:familyName Suzuki
79 schema:givenName Kenji
80 rdf:type schema:Person
81 N2f29ddda521e4629b9f40fd45e203d8d schema:familyName Shen
82 schema:givenName Dinggang
83 rdf:type schema:Person
84 N3632065989d7480ba42fd8642366d26e rdf:first sg:person.01016701272.67
85 rdf:rest Nf912f1f569654a1688212f54e8451244
86 N4c6169985a404354b9fcd351b72afd84 schema:name dimensions_id
87 schema:value pub.1011259208
88 rdf:type schema:PropertyValue
89 N4ef7d70403364695b257d4a40e595568 rdf:first sg:person.0703547214.37
90 rdf:rest Nbf7b9fbe6a3545b3938c0dc56d5ff557
91 N5e4c20b256ad45e387f18b4b4788741f rdf:first N1b42dce73dbc40bbabb964f14d84b381
92 rdf:rest N712f841cbc1a4c759525bfe09954b61f
93 N65969a1ea6a8477fb490aec32d10f7db schema:familyName Yan
94 schema:givenName Pingkun
95 rdf:type schema:Person
96 N66432a396a594c6e8ef05468ae3b09c2 schema:isbn 978-3-642-15947-3
97 978-3-642-15948-0
98 schema:name Machine Learning in Medical Imaging
99 rdf:type schema:Book
100 N6711b6ae49974ec8a6aa236ba8329e33 rdf:first sg:person.01302754400.24
101 rdf:rest N1280740049a84d70bcdefbc1354eae46
102 N712f841cbc1a4c759525bfe09954b61f rdf:first N65969a1ea6a8477fb490aec32d10f7db
103 rdf:rest N8f8b7e393cdd45da84f7aa33cfb56f1f
104 N7625a5e7ff4440b18085624575cd1211 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N8f8b7e393cdd45da84f7aa33cfb56f1f rdf:first N20efe8aaf9074c40b6beef949edbab43
107 rdf:rest N0e5a221e8ed3442f8928a6a70798cb17
108 Nbf7b9fbe6a3545b3938c0dc56d5ff557 rdf:first sg:person.0627433214.30
109 rdf:rest Nf756f478a23c4be693218395e1f40ca6
110 Nd0474307560b420a9bb39f7812b61be0 schema:name Springer Nature
111 rdf:type schema:Organisation
112 Ne6381d4a80564df596636eea9d2f482b schema:name doi
113 schema:value 10.1007/978-3-642-15948-0_1
114 rdf:type schema:PropertyValue
115 Nf756f478a23c4be693218395e1f40ca6 rdf:first sg:person.01372425362.30
116 rdf:rest N6711b6ae49974ec8a6aa236ba8329e33
117 Nf912f1f569654a1688212f54e8451244 rdf:first sg:person.0767211426.21
118 rdf:rest N4ef7d70403364695b257d4a40e595568
119 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
120 schema:name Information and Computing Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
123 schema:name Artificial Intelligence and Image Processing
124 rdf:type schema:DefinedTerm
125 sg:person.01016701272.67 schema:affiliation grid-institutes:grid.419233.e
126 schema:familyName Mittal
127 schema:givenName Sushil
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016701272.67
129 rdf:type schema:Person
130 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
131 schema:familyName Comaniciu
132 schema:givenName Dorin
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
134 rdf:type schema:Person
135 sg:person.01302754400.24 schema:affiliation grid-institutes:grid.430387.b
136 schema:familyName Meer
137 schema:givenName Peter
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302754400.24
139 rdf:type schema:Person
140 sg:person.01372425362.30 schema:affiliation grid-institutes:grid.419233.e
141 schema:familyName Zhou
142 schema:givenName Shaohua Kevin
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30
144 rdf:type schema:Person
145 sg:person.0627433214.30 schema:affiliation grid-institutes:grid.481749.7
146 schema:familyName Vega-Higuera
147 schema:givenName Fernando
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627433214.30
149 rdf:type schema:Person
150 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
151 schema:familyName Georgescu
152 schema:givenName Bogdan
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
154 rdf:type schema:Person
155 sg:person.0767211426.21 schema:affiliation grid-institutes:grid.419233.e
156 schema:familyName Zheng
157 schema:givenName Yefeng
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767211426.21
159 rdf:type schema:Person
160 grid-institutes:grid.419233.e schema:alternateName Siemens Corporate Research, USA
161 schema:name Electrical and Computer Engineering Department, Rutgers University, USA
162 Siemens Corporate Research, USA
163 rdf:type schema:Organization
164 grid-institutes:grid.430387.b schema:alternateName Electrical and Computer Engineering Department, Rutgers University, USA
165 schema:name Electrical and Computer Engineering Department, Rutgers University, USA
166 rdf:type schema:Organization
167 grid-institutes:grid.481749.7 schema:alternateName Computed Tomography, Siemens Healthcare, Germany
168 schema:name Computed Tomography, Siemens Healthcare, Germany
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...