Patient-Specific Modeling of the Heart: Applications to Cardiovascular Disease Management View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Razvan Ionasec , Ingmar Voigt , Viorel Mihalef , Saša Grbić , Dime Vitanovski , Yang Wang , Yefeng Zheng , Joachim Hornegger , Nassir Navab , Bogdan Georgescu , Dorin Comaniciu

ABSTRACT

As decisions in cardiology increasingly rely on non-invasive methods, fast and precise image analysis tools have become a crucial component of the clinical workflow. Especially when dealing with complex cardiovascular disorders, such as valvular heart disease, advanced imaging techniques have the potential to significantly improve treatment outcome as well as to reduce procedure risks and related costs. We are developing patient-specific cardiac models, estimated from available multi-modal images, to enable advanced clinical applications for the management of cardiovascular disease. In particular, a novel physiological model of the complete heart, including the chambers and valvular apparatus is introduced, which captures a large spectrum of morphological, dynamic and pathological variations. To estimate the patient-specific model parameters from four-dimensional cardiac images, we have developed a robust learning-based framework. The model-driven approach enables a multitude of advanced clinical applications. Gold standard clinical methods, which manually process 2D images, can be replaced with fast, precise, and comprehensive model-based quantification to enhance cardiac analysis. For emerging percutaneous and minimal invasive valve interventions, cardiac surgeons and interventional cardiologists can substantially benefit from automated patient selection and virtual valve implantation techniques. Furthermore, the complete cardiac model enables for patient-specific hemodynamic simulations and blood flow analysis. Extensive experiments demonstrated the potential of these technologies to improve treatment of cardiovascular disease. More... »

PAGES

14-24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15835-3_2

DOI

http://dx.doi.org/10.1007/978-3-642-15835-3_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005873171


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Aided Medical Procedures, Technical University Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
            "Computer Aided Medical Procedures, Technical University Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionasec", 
        "givenName": "Razvan", 
        "id": "sg:person.01010560470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
            "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voigt", 
        "givenName": "Ingmar", 
        "id": "sg:person.0751662414.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mihalef", 
        "givenName": "Viorel", 
        "id": "sg:person.01312724714.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312724714.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Aided Medical Procedures, Technical University Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
            "Computer Aided Medical Procedures, Technical University Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grbi\u0107", 
        "givenName": "Sa\u0161a", 
        "id": "sg:person.01126227511.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126227511.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
            "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitanovski", 
        "givenName": "Dime", 
        "id": "sg:person.01242456111.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yang", 
        "id": "sg:person.01356704511.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356704511.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yefeng", 
        "id": "sg:person.0767211426.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767211426.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "id": "sg:person.01322323610.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Aided Medical Procedures, Technical University Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Computer Aided Medical Procedures, Technical University Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "id": "sg:person.01275015030.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275015030.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "As decisions in cardiology increasingly rely on non-invasive methods, fast and precise image analysis tools have become a crucial component of the clinical workflow. Especially when dealing with complex cardiovascular disorders, such as valvular heart disease, advanced imaging techniques have the potential to significantly improve treatment outcome as well as to reduce procedure risks and related costs. We are developing patient-specific cardiac models, estimated from available multi-modal images, to enable advanced clinical applications for the management of cardiovascular disease. In particular, a novel physiological model of the complete heart, including the chambers and valvular apparatus is introduced, which captures a large spectrum of morphological, dynamic and pathological variations. To estimate the patient-specific model parameters from four-dimensional cardiac images, we have developed a robust learning-based framework. The model-driven approach enables a multitude of advanced clinical applications. Gold standard clinical methods, which manually process 2D images, can be replaced with fast, precise, and comprehensive model-based quantification to enhance cardiac analysis. For emerging percutaneous and minimal invasive valve interventions, cardiac surgeons and interventional cardiologists can substantially benefit from automated patient selection and virtual valve implantation techniques. Furthermore, the complete cardiac model enables for patient-specific hemodynamic simulations and blood flow analysis. Extensive experiments demonstrated the potential of these technologies to improve treatment of cardiovascular disease.", 
    "editor": [
      {
        "familyName": "Camara", 
        "givenName": "Oscar", 
        "type": "Person"
      }, 
      {
        "familyName": "Pop", 
        "givenName": "Mihaela", 
        "type": "Person"
      }, 
      {
        "familyName": "Rhode", 
        "givenName": "Kawal", 
        "type": "Person"
      }, 
      {
        "familyName": "Sermesant", 
        "givenName": "Maxime", 
        "type": "Person"
      }, 
      {
        "familyName": "Smith", 
        "givenName": "Nic", 
        "type": "Person"
      }, 
      {
        "familyName": "Young", 
        "givenName": "Alistair", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15835-3_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15834-6", 
        "978-3-642-15835-3"
      ], 
      "name": "Statistical Atlases and Computational Models of the Heart", 
      "type": "Book"
    }, 
    "keywords": [
      "model-driven approach", 
      "learning-based framework", 
      "multi-modal images", 
      "advanced clinical applications", 
      "patient-specific model parameters", 
      "patient-specific cardiac models", 
      "image analysis tools", 
      "patient-specific hemodynamic simulations", 
      "novel physiological model", 
      "Extensive experiments", 
      "complex cardiovascular disorders", 
      "cardiac images", 
      "patient-specific modeling", 
      "clinical workflow", 
      "cardiac analysis", 
      "analysis tools", 
      "images", 
      "cardiac models", 
      "complete heart", 
      "model enables", 
      "hemodynamic simulations", 
      "applications", 
      "workflow", 
      "flow analysis", 
      "crucial component", 
      "model parameters", 
      "large spectrum", 
      "technique", 
      "framework", 
      "technology", 
      "related costs", 
      "tool", 
      "enables", 
      "method", 
      "management", 
      "model", 
      "cost", 
      "modeling", 
      "simulations", 
      "model-based quantification", 
      "decisions", 
      "physiological model", 
      "selection", 
      "multitude", 
      "imaging techniques", 
      "blood flow analysis", 
      "experiments", 
      "standard clinical methods", 
      "clinical applications", 
      "components", 
      "analysis", 
      "procedure risk", 
      "advanced imaging techniques", 
      "valvular apparatus", 
      "parameters", 
      "cardiovascular disease management", 
      "disease management", 
      "potential", 
      "cardiology", 
      "non-invasive method", 
      "cardiologists", 
      "pathological variations", 
      "quantification", 
      "approach", 
      "heart", 
      "variation", 
      "surgeons", 
      "spectra", 
      "clinical methods", 
      "cardiac surgeons", 
      "risk", 
      "outcomes", 
      "intervention", 
      "apparatus", 
      "heart disease", 
      "interventional cardiologists", 
      "valvular heart disease", 
      "cardiovascular disease", 
      "disease", 
      "valve intervention", 
      "chamber", 
      "cardiovascular disorders", 
      "treatment outcomes", 
      "disorders", 
      "treatment", 
      "implantation technique", 
      "patient selection", 
      "precise image analysis tools", 
      "available multi-modal images", 
      "four-dimensional cardiac images", 
      "robust learning-based framework", 
      "Gold standard clinical methods", 
      "comprehensive model-based quantification", 
      "minimal invasive valve interventions", 
      "invasive valve interventions", 
      "virtual valve implantation techniques", 
      "valve implantation techniques", 
      "complete cardiac model enables", 
      "cardiac model enables"
    ], 
    "name": "Patient-Specific Modeling of the Heart: Applications to Cardiovascular Disease Management", 
    "pagination": "14-24", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005873171"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15835-3_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15835-3_2", 
      "https://app.dimensions.ai/details/publication/pub.1005873171"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_173.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15835-3_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15835-3_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15835-3_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15835-3_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15835-3_2'


 

This table displays all metadata directly associated to this object as RDF triples.

278 TRIPLES      23 PREDICATES      129 URIs      118 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15835-3_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:09
4 anzsrc-for:0903
5 anzsrc-for:11
6 anzsrc-for:1102
7 schema:author N0feb9732ae8141a38a1ca6945375eb75
8 schema:datePublished 2010
9 schema:datePublishedReg 2010-01-01
10 schema:description As decisions in cardiology increasingly rely on non-invasive methods, fast and precise image analysis tools have become a crucial component of the clinical workflow. Especially when dealing with complex cardiovascular disorders, such as valvular heart disease, advanced imaging techniques have the potential to significantly improve treatment outcome as well as to reduce procedure risks and related costs. We are developing patient-specific cardiac models, estimated from available multi-modal images, to enable advanced clinical applications for the management of cardiovascular disease. In particular, a novel physiological model of the complete heart, including the chambers and valvular apparatus is introduced, which captures a large spectrum of morphological, dynamic and pathological variations. To estimate the patient-specific model parameters from four-dimensional cardiac images, we have developed a robust learning-based framework. The model-driven approach enables a multitude of advanced clinical applications. Gold standard clinical methods, which manually process 2D images, can be replaced with fast, precise, and comprehensive model-based quantification to enhance cardiac analysis. For emerging percutaneous and minimal invasive valve interventions, cardiac surgeons and interventional cardiologists can substantially benefit from automated patient selection and virtual valve implantation techniques. Furthermore, the complete cardiac model enables for patient-specific hemodynamic simulations and blood flow analysis. Extensive experiments demonstrated the potential of these technologies to improve treatment of cardiovascular disease.
11 schema:editor N56fce6b5417d4f269dbf93bed8b06513
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Na74050206b00472785f66181811c4200
16 schema:keywords Extensive experiments
17 Gold standard clinical methods
18 advanced clinical applications
19 advanced imaging techniques
20 analysis
21 analysis tools
22 apparatus
23 applications
24 approach
25 available multi-modal images
26 blood flow analysis
27 cardiac analysis
28 cardiac images
29 cardiac model enables
30 cardiac models
31 cardiac surgeons
32 cardiologists
33 cardiology
34 cardiovascular disease
35 cardiovascular disease management
36 cardiovascular disorders
37 chamber
38 clinical applications
39 clinical methods
40 clinical workflow
41 complete cardiac model enables
42 complete heart
43 complex cardiovascular disorders
44 components
45 comprehensive model-based quantification
46 cost
47 crucial component
48 decisions
49 disease
50 disease management
51 disorders
52 enables
53 experiments
54 flow analysis
55 four-dimensional cardiac images
56 framework
57 heart
58 heart disease
59 hemodynamic simulations
60 image analysis tools
61 images
62 imaging techniques
63 implantation technique
64 intervention
65 interventional cardiologists
66 invasive valve interventions
67 large spectrum
68 learning-based framework
69 management
70 method
71 minimal invasive valve interventions
72 model
73 model enables
74 model parameters
75 model-based quantification
76 model-driven approach
77 modeling
78 multi-modal images
79 multitude
80 non-invasive method
81 novel physiological model
82 outcomes
83 parameters
84 pathological variations
85 patient selection
86 patient-specific cardiac models
87 patient-specific hemodynamic simulations
88 patient-specific model parameters
89 patient-specific modeling
90 physiological model
91 potential
92 precise image analysis tools
93 procedure risk
94 quantification
95 related costs
96 risk
97 robust learning-based framework
98 selection
99 simulations
100 spectra
101 standard clinical methods
102 surgeons
103 technique
104 technology
105 tool
106 treatment
107 treatment outcomes
108 valve implantation techniques
109 valve intervention
110 valvular apparatus
111 valvular heart disease
112 variation
113 virtual valve implantation techniques
114 workflow
115 schema:name Patient-Specific Modeling of the Heart: Applications to Cardiovascular Disease Management
116 schema:pagination 14-24
117 schema:productId N91e9c8286ab84094b0b5576fadaf094c
118 N944e72f6d8d848699febfd9a756470e8
119 schema:publisher N4ec72c1add684fdb8b259dfdf0bf4954
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005873171
121 https://doi.org/10.1007/978-3-642-15835-3_2
122 schema:sdDatePublished 2022-01-01T19:10
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher N8d7ff5f643184e90859bfec0268b348a
125 schema:url https://doi.org/10.1007/978-3-642-15835-3_2
126 sgo:license sg:explorer/license/
127 sgo:sdDataset chapters
128 rdf:type schema:Chapter
129 N0734ea91e1444fffaea65767d1b1db8a schema:familyName Sermesant
130 schema:givenName Maxime
131 rdf:type schema:Person
132 N0c8b772a063c42148c03c4d732ac46e6 rdf:first sg:person.01275015030.20
133 rdf:rest Nde244b7f0e9b488f8d004bcfea2364f3
134 N0feb9732ae8141a38a1ca6945375eb75 rdf:first sg:person.01010560470.38
135 rdf:rest N1c77d4510fdd48b3976bf363f1b7fdeb
136 N1c77d4510fdd48b3976bf363f1b7fdeb rdf:first sg:person.0751662414.66
137 rdf:rest N2564edc8333f4e419508ad86948dcfc4
138 N2564edc8333f4e419508ad86948dcfc4 rdf:first sg:person.01312724714.93
139 rdf:rest Nfd9b5732c46c43db8c2c934203d0de9d
140 N31768b2598bf457dac053eb686fc4342 schema:familyName Smith
141 schema:givenName Nic
142 rdf:type schema:Person
143 N43a964368e5145788f2c5c0009cf244a schema:familyName Young
144 schema:givenName Alistair
145 rdf:type schema:Person
146 N452fa1a884ce40e8808dec816e041246 rdf:first Nd74c60e84e91493496a68b592c764b52
147 rdf:rest Nb278eb8fc3d44169816ea9e843a446a6
148 N4ec72c1add684fdb8b259dfdf0bf4954 schema:name Springer Nature
149 rdf:type schema:Organisation
150 N56fce6b5417d4f269dbf93bed8b06513 rdf:first N6e605030367840bfae77636387fb1d93
151 rdf:rest N452fa1a884ce40e8808dec816e041246
152 N6e605030367840bfae77636387fb1d93 schema:familyName Camara
153 schema:givenName Oscar
154 rdf:type schema:Person
155 N857e5a9980e742e3a90e2238b8de44f1 rdf:first sg:person.01356704511.13
156 rdf:rest Nab8c234b73fc46cfbd63d49bcc2ff8c7
157 N861bc80179fb45c694c3f468da77eea1 schema:familyName Rhode
158 schema:givenName Kawal
159 rdf:type schema:Person
160 N8d7ff5f643184e90859bfec0268b348a schema:name Springer Nature - SN SciGraph project
161 rdf:type schema:Organization
162 N8dad7f7ac7d94c37a09cc172e78225d4 rdf:first N43a964368e5145788f2c5c0009cf244a
163 rdf:rest rdf:nil
164 N8e47b651a491417ab02c078da4083df2 rdf:first sg:person.01066111014.77
165 rdf:rest rdf:nil
166 N91e9c8286ab84094b0b5576fadaf094c schema:name dimensions_id
167 schema:value pub.1005873171
168 rdf:type schema:PropertyValue
169 N944e72f6d8d848699febfd9a756470e8 schema:name doi
170 schema:value 10.1007/978-3-642-15835-3_2
171 rdf:type schema:PropertyValue
172 Na03ddb89a1bd49a1886dc2248e00082a rdf:first sg:person.01322323610.92
173 rdf:rest N0c8b772a063c42148c03c4d732ac46e6
174 Na74050206b00472785f66181811c4200 schema:isbn 978-3-642-15834-6
175 978-3-642-15835-3
176 schema:name Statistical Atlases and Computational Models of the Heart
177 rdf:type schema:Book
178 Nab8c234b73fc46cfbd63d49bcc2ff8c7 rdf:first sg:person.0767211426.21
179 rdf:rest Na03ddb89a1bd49a1886dc2248e00082a
180 Nb278eb8fc3d44169816ea9e843a446a6 rdf:first N861bc80179fb45c694c3f468da77eea1
181 rdf:rest Nbf0be164f96043739faf8e2b95e59e65
182 Nbf0be164f96043739faf8e2b95e59e65 rdf:first N0734ea91e1444fffaea65767d1b1db8a
183 rdf:rest Nc4e2846e464a442383576f335f09d431
184 Nc00bf642685547b48e05d3c0584c12cb rdf:first sg:person.01242456111.33
185 rdf:rest N857e5a9980e742e3a90e2238b8de44f1
186 Nc4e2846e464a442383576f335f09d431 rdf:first N31768b2598bf457dac053eb686fc4342
187 rdf:rest N8dad7f7ac7d94c37a09cc172e78225d4
188 Nd74c60e84e91493496a68b592c764b52 schema:familyName Pop
189 schema:givenName Mihaela
190 rdf:type schema:Person
191 Nde244b7f0e9b488f8d004bcfea2364f3 rdf:first sg:person.0703547214.37
192 rdf:rest N8e47b651a491417ab02c078da4083df2
193 Nfd9b5732c46c43db8c2c934203d0de9d rdf:first sg:person.01126227511.07
194 rdf:rest Nc00bf642685547b48e05d3c0584c12cb
195 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
196 schema:name Information and Computing Sciences
197 rdf:type schema:DefinedTerm
198 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
199 schema:name Artificial Intelligence and Image Processing
200 rdf:type schema:DefinedTerm
201 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
202 schema:name Engineering
203 rdf:type schema:DefinedTerm
204 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
205 schema:name Biomedical Engineering
206 rdf:type schema:DefinedTerm
207 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
208 schema:name Medical and Health Sciences
209 rdf:type schema:DefinedTerm
210 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
211 schema:name Cardiorespiratory Medicine and Haematology
212 rdf:type schema:DefinedTerm
213 sg:person.01010560470.38 schema:affiliation grid-institutes:grid.6936.a
214 schema:familyName Ionasec
215 schema:givenName Razvan
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38
217 rdf:type schema:Person
218 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
219 schema:familyName Comaniciu
220 schema:givenName Dorin
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
222 rdf:type schema:Person
223 sg:person.01126227511.07 schema:affiliation grid-institutes:grid.6936.a
224 schema:familyName Grbić
225 schema:givenName Saša
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126227511.07
227 rdf:type schema:Person
228 sg:person.01242456111.33 schema:affiliation grid-institutes:grid.5330.5
229 schema:familyName Vitanovski
230 schema:givenName Dime
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33
232 rdf:type schema:Person
233 sg:person.01275015030.20 schema:affiliation grid-institutes:grid.6936.a
234 schema:familyName Navab
235 schema:givenName Nassir
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275015030.20
237 rdf:type schema:Person
238 sg:person.01312724714.93 schema:affiliation grid-institutes:grid.419233.e
239 schema:familyName Mihalef
240 schema:givenName Viorel
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312724714.93
242 rdf:type schema:Person
243 sg:person.01322323610.92 schema:affiliation grid-institutes:grid.5330.5
244 schema:familyName Hornegger
245 schema:givenName Joachim
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92
247 rdf:type schema:Person
248 sg:person.01356704511.13 schema:affiliation grid-institutes:grid.419233.e
249 schema:familyName Wang
250 schema:givenName Yang
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356704511.13
252 rdf:type schema:Person
253 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
254 schema:familyName Georgescu
255 schema:givenName Bogdan
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
257 rdf:type schema:Person
258 sg:person.0751662414.66 schema:affiliation grid-institutes:grid.5330.5
259 schema:familyName Voigt
260 schema:givenName Ingmar
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66
262 rdf:type schema:Person
263 sg:person.0767211426.21 schema:affiliation grid-institutes:grid.419233.e
264 schema:familyName Zheng
265 schema:givenName Yefeng
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767211426.21
267 rdf:type schema:Person
268 grid-institutes:grid.419233.e schema:alternateName Integrated Data Systems, Siemens Corporate Research, Princeton, USA
269 schema:name Integrated Data Systems, Siemens Corporate Research, Princeton, USA
270 rdf:type schema:Organization
271 grid-institutes:grid.5330.5 schema:alternateName Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany
272 schema:name Integrated Data Systems, Siemens Corporate Research, Princeton, USA
273 Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany
274 rdf:type schema:Organization
275 grid-institutes:grid.6936.a schema:alternateName Computer Aided Medical Procedures, Technical University Munich, Germany
276 schema:name Computer Aided Medical Procedures, Technical University Munich, Germany
277 Integrated Data Systems, Siemens Corporate Research, Princeton, USA
278 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...