Learning a Combination of Heterogeneous Dissimilarities from Incomplete Knowledge View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

David Hutchison , Takeo Kanade , Josef Kittler , Jon M. Kleinberg , Friedemann Mattern , John C. Mitchell , Moni Naor , Oscar Nierstrasz , C. Pandu Rangan , Bernhard Steffen , Madhu Sudan , Demetri Terzopoulos , Doug Tygar , Moshe Y. Vardi , Gerhard Weikum , Manuel Martín-Merino

ABSTRACT

The performance of many pattern recognition algorithms depends strongly on the dissimilarity considered to evaluate the sample proximities. The choice of a good dissimilarity is a difficult task because each one reflects different features of the data. Therefore, different dissimilarities and data sources should be integrated in order to reflect more accurately which is similar for the user and the problem at hand. In many applications, the user feedback or the a priory knowledge about the problem provide pairs of similar and dissimilar examples. This side-information may be used to learn a distance metric that reflects more accurately the sample proximities. In this paper, we address the problem of learning a linear combination of dissimilarities using side information in the form of equivalence constraints. The minimization of the error function is based on a quadratic optimization algorithm. A smoothing term is included that penalizes the complexity of the family of distances and avoids overfitting. The experimental results suggest that the method proposed outperforms a standard metric learning algorithm and improves classification and clustering results based on a single dissimilarity. More... »

PAGES

62-71

References to SciGraph publications

  • 2006-12. Kernel-based distance metric learning for microarray data classification in BMC BIOINFORMATICS
  • 2009-08. A local semi-supervised Sammon algorithm for textual data visualization in JOURNAL OF INTELLIGENT INFORMATION SYSTEMS
  • 1985-12. Comparing partitions in JOURNAL OF CLASSIFICATION
  • Book

    TITLE

    Artificial Neural Networks – ICANN 2010

    ISBN

    978-3-642-15824-7
    978-3-642-15825-4

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-15825-4_7

    DOI

    http://dx.doi.org/10.1007/978-3-642-15825-4_7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006571668


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Hutchison", 
            "givenName": "David", 
            "id": "sg:person.012636622347.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012636622347.55"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Kanade", 
            "givenName": "Takeo", 
            "id": "sg:person.010127272557.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127272557.31"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Kittler", 
            "givenName": "Josef", 
            "id": "sg:person.010622266176.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010622266176.73"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Kleinberg", 
            "givenName": "Jon M.", 
            "id": "sg:person.011522233557.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522233557.04"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Mattern", 
            "givenName": "Friedemann", 
            "id": "sg:person.012317614157.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012317614157.00"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Mitchell", 
            "givenName": "John C.", 
            "id": "sg:person.012713775677.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012713775677.86"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Naor", 
            "givenName": "Moni", 
            "id": "sg:person.07776170271.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07776170271.83"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Nierstrasz", 
            "givenName": "Oscar", 
            "id": "sg:person.014510135557.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014510135557.74"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Rangan", 
            "givenName": "C. Pandu", 
            "id": "sg:person.016366027737.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016366027737.61"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Steffen", 
            "givenName": "Bernhard", 
            "id": "sg:person.013270457265.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270457265.00"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Sudan", 
            "givenName": "Madhu", 
            "id": "sg:person.014663420265.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014663420265.17"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Terzopoulos", 
            "givenName": "Demetri", 
            "id": "sg:person.016347323445.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Tygar", 
            "givenName": "Doug", 
            "id": "sg:person.011464452455.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011464452455.47"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Vardi", 
            "givenName": "Moshe Y.", 
            "id": "sg:person.011743631465.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011743631465.56"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Weikum", 
            "givenName": "Gerhard", 
            "id": "sg:person.010663162237.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010663162237.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pontifical University of Salamanca", 
              "id": "https://www.grid.ac/institutes/grid.449312.9", 
              "name": [
                "Universidad Pontificia de Salamanca, C/Compa\u00f1\u00eda 5, 37002\u00a0Salamanca, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mart\u00edn-Merino", 
            "givenName": "Manuel", 
            "id": "sg:person.010144031071.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010144031071.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007329839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10844-008-0056-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013173826", 
              "https://doi.org/10.1007/s10844-008-0056-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10844-008-0056-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013173826", 
              "https://doi.org/10.1007/s10844-008-0056-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017870433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01908075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022323983", 
              "https://doi.org/10.1007/bf01908075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2009/906865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024387828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1081870.1081960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053286008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053396023", 
              "https://doi.org/10.1186/1471-2105-7-299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2008.137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061540639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611972795.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088800375"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "The performance of many pattern recognition algorithms depends strongly on the dissimilarity considered to evaluate the sample proximities. The choice of a good dissimilarity is a difficult task because each one reflects different features of the data. Therefore, different dissimilarities and data sources should be integrated in order to reflect more accurately which is similar for the user and the problem at hand. In many applications, the user feedback or the a priory knowledge about the problem provide pairs of similar and dissimilar examples. This side-information may be used to learn a distance metric that reflects more accurately the sample proximities. In this paper, we address the problem of learning a linear combination of dissimilarities using side information in the form of equivalence constraints. The minimization of the error function is based on a quadratic optimization algorithm. A smoothing term is included that penalizes the complexity of the family of distances and avoids overfitting. The experimental results suggest that the method proposed outperforms a standard metric learning algorithm and improves classification and clustering results based on a single dissimilarity.", 
        "editor": [
          {
            "familyName": "Diamantaras", 
            "givenName": "Konstantinos", 
            "type": "Person"
          }, 
          {
            "familyName": "Duch", 
            "givenName": "Wlodek", 
            "type": "Person"
          }, 
          {
            "familyName": "Iliadis", 
            "givenName": "Lazaros S.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-15825-4_7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-15824-7", 
            "978-3-642-15825-4"
          ], 
          "name": "Artificial Neural Networks \u2013 ICANN 2010", 
          "type": "Book"
        }, 
        "name": "Learning a Combination of Heterogeneous Dissimilarities from Incomplete Knowledge", 
        "pagination": "62-71", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-15825-4_7"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1f4d378f4c02c86b81b19514b2c1534dd6e6d41a40fbe798b190c85ffaa17c43"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006571668"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-15825-4_7", 
          "https://app.dimensions.ai/details/publication/pub.1006571668"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T18:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000247.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-15825-4_7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15825-4_7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15825-4_7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15825-4_7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15825-4_7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    195 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-15825-4_7 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author Nabacddeb8b284c0a82334ab460c1ebbe
    4 schema:citation sg:pub.10.1007/bf01908075
    5 sg:pub.10.1007/s10844-008-0056-5
    6 sg:pub.10.1186/1471-2105-7-299
    7 https://doi.org/10.1093/bioinformatics/bth294
    8 https://doi.org/10.1093/bioinformatics/btl065
    9 https://doi.org/10.1109/tcbb.2008.137
    10 https://doi.org/10.1137/1.9781611972795.55
    11 https://doi.org/10.1145/1081870.1081960
    12 https://doi.org/10.1155/2009/906865
    13 schema:datePublished 2010
    14 schema:datePublishedReg 2010-01-01
    15 schema:description The performance of many pattern recognition algorithms depends strongly on the dissimilarity considered to evaluate the sample proximities. The choice of a good dissimilarity is a difficult task because each one reflects different features of the data. Therefore, different dissimilarities and data sources should be integrated in order to reflect more accurately which is similar for the user and the problem at hand. In many applications, the user feedback or the a priory knowledge about the problem provide pairs of similar and dissimilar examples. This side-information may be used to learn a distance metric that reflects more accurately the sample proximities. In this paper, we address the problem of learning a linear combination of dissimilarities using side information in the form of equivalence constraints. The minimization of the error function is based on a quadratic optimization algorithm. A smoothing term is included that penalizes the complexity of the family of distances and avoids overfitting. The experimental results suggest that the method proposed outperforms a standard metric learning algorithm and improves classification and clustering results based on a single dissimilarity.
    16 schema:editor N899592d190a04dc9a87c1b0d787a6a45
    17 schema:genre chapter
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf Nbd1d80124f8e4d73af80a8039921ad08
    21 schema:name Learning a Combination of Heterogeneous Dissimilarities from Incomplete Knowledge
    22 schema:pagination 62-71
    23 schema:productId N11b152d4803d46b39b8498307b52812e
    24 N1bd5686cf6d74a539f8412bf63612a36
    25 N9c2d6dc7cd8c46daa659bc122a2d3236
    26 schema:publisher N8aa3150481d24836a7f4228b01d5782e
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006571668
    28 https://doi.org/10.1007/978-3-642-15825-4_7
    29 schema:sdDatePublished 2019-04-15T18:08
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N063a90456db7407a8247d1d539c69c90
    32 schema:url http://link.springer.com/10.1007/978-3-642-15825-4_7
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset chapters
    35 rdf:type schema:Chapter
    36 N03da1929b16848579d62f0a1f591e04c rdf:first sg:person.014663420265.17
    37 rdf:rest Nead03e5e4ec14b47bc4e405c6e56c1d8
    38 N0559b24db2924e7396b0eeaf745be2cb rdf:first sg:person.012317614157.00
    39 rdf:rest N7dbeb49dcffa4178a24c86b80393c0e4
    40 N063a90456db7407a8247d1d539c69c90 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 N09617002153146fda60a7345721f5c77 rdf:first sg:person.011522233557.04
    43 rdf:rest N0559b24db2924e7396b0eeaf745be2cb
    44 N11b152d4803d46b39b8498307b52812e schema:name doi
    45 schema:value 10.1007/978-3-642-15825-4_7
    46 rdf:type schema:PropertyValue
    47 N1b11d44f16ee44d89608049aa6ea5c12 rdf:first sg:person.011743631465.56
    48 rdf:rest N57c2a4a2c39e4b68a6afdf9931fd45e4
    49 N1bd5686cf6d74a539f8412bf63612a36 schema:name readcube_id
    50 schema:value 1f4d378f4c02c86b81b19514b2c1534dd6e6d41a40fbe798b190c85ffaa17c43
    51 rdf:type schema:PropertyValue
    52 N2b296954d87249078e52baebd980a0d9 rdf:first sg:person.016366027737.61
    53 rdf:rest N80d10d15e78e413dbad488652d720b97
    54 N2d0507042ab94357a9e3d678f63d62c0 rdf:first sg:person.010144031071.88
    55 rdf:rest rdf:nil
    56 N36995943759c4703b678bb6b3f005ea3 rdf:first sg:person.07776170271.83
    57 rdf:rest N6a637278cf9644a59d2f7ce7331d1d8e
    58 N4c5733df2eb143058308dab8ddcf2075 schema:familyName Duch
    59 schema:givenName Wlodek
    60 rdf:type schema:Person
    61 N56b49b73006745158f5b21ceae72750b rdf:first Nb23165683e9942af9611a6a9759610ac
    62 rdf:rest rdf:nil
    63 N57c2a4a2c39e4b68a6afdf9931fd45e4 rdf:first sg:person.010663162237.83
    64 rdf:rest N2d0507042ab94357a9e3d678f63d62c0
    65 N6a637278cf9644a59d2f7ce7331d1d8e rdf:first sg:person.014510135557.74
    66 rdf:rest N2b296954d87249078e52baebd980a0d9
    67 N76b4d0d812124ccbbbc3879a4fde2b32 rdf:first sg:person.011464452455.47
    68 rdf:rest N1b11d44f16ee44d89608049aa6ea5c12
    69 N7dbeb49dcffa4178a24c86b80393c0e4 rdf:first sg:person.012713775677.86
    70 rdf:rest N36995943759c4703b678bb6b3f005ea3
    71 N80d10d15e78e413dbad488652d720b97 rdf:first sg:person.013270457265.00
    72 rdf:rest N03da1929b16848579d62f0a1f591e04c
    73 N80deed15128a4a28957c1ee4f6f1b31e rdf:first sg:person.010127272557.31
    74 rdf:rest Nc18b54661f6b4f47bf784078133986bc
    75 N899592d190a04dc9a87c1b0d787a6a45 rdf:first Nf2694f3c4c334fcbae703d0170a99006
    76 rdf:rest Nc368085b677f4344a3c318987f57fd18
    77 N8aa3150481d24836a7f4228b01d5782e schema:location Berlin, Heidelberg
    78 schema:name Springer Berlin Heidelberg
    79 rdf:type schema:Organisation
    80 N9c2d6dc7cd8c46daa659bc122a2d3236 schema:name dimensions_id
    81 schema:value pub.1006571668
    82 rdf:type schema:PropertyValue
    83 Nabacddeb8b284c0a82334ab460c1ebbe rdf:first sg:person.012636622347.55
    84 rdf:rest N80deed15128a4a28957c1ee4f6f1b31e
    85 Nb23165683e9942af9611a6a9759610ac schema:familyName Iliadis
    86 schema:givenName Lazaros S.
    87 rdf:type schema:Person
    88 Nbd1d80124f8e4d73af80a8039921ad08 schema:isbn 978-3-642-15824-7
    89 978-3-642-15825-4
    90 schema:name Artificial Neural Networks – ICANN 2010
    91 rdf:type schema:Book
    92 Nc18b54661f6b4f47bf784078133986bc rdf:first sg:person.010622266176.73
    93 rdf:rest N09617002153146fda60a7345721f5c77
    94 Nc368085b677f4344a3c318987f57fd18 rdf:first N4c5733df2eb143058308dab8ddcf2075
    95 rdf:rest N56b49b73006745158f5b21ceae72750b
    96 Nead03e5e4ec14b47bc4e405c6e56c1d8 rdf:first sg:person.016347323445.35
    97 rdf:rest N76b4d0d812124ccbbbc3879a4fde2b32
    98 Nf2694f3c4c334fcbae703d0170a99006 schema:familyName Diamantaras
    99 schema:givenName Konstantinos
    100 rdf:type schema:Person
    101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Information and Computing Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Information Systems
    106 rdf:type schema:DefinedTerm
    107 sg:person.010127272557.31 schema:familyName Kanade
    108 schema:givenName Takeo
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127272557.31
    110 rdf:type schema:Person
    111 sg:person.010144031071.88 schema:affiliation https://www.grid.ac/institutes/grid.449312.9
    112 schema:familyName Martín-Merino
    113 schema:givenName Manuel
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010144031071.88
    115 rdf:type schema:Person
    116 sg:person.010622266176.73 schema:familyName Kittler
    117 schema:givenName Josef
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010622266176.73
    119 rdf:type schema:Person
    120 sg:person.010663162237.83 schema:familyName Weikum
    121 schema:givenName Gerhard
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010663162237.83
    123 rdf:type schema:Person
    124 sg:person.011464452455.47 schema:familyName Tygar
    125 schema:givenName Doug
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011464452455.47
    127 rdf:type schema:Person
    128 sg:person.011522233557.04 schema:familyName Kleinberg
    129 schema:givenName Jon M.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522233557.04
    131 rdf:type schema:Person
    132 sg:person.011743631465.56 schema:familyName Vardi
    133 schema:givenName Moshe Y.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011743631465.56
    135 rdf:type schema:Person
    136 sg:person.012317614157.00 schema:familyName Mattern
    137 schema:givenName Friedemann
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012317614157.00
    139 rdf:type schema:Person
    140 sg:person.012636622347.55 schema:familyName Hutchison
    141 schema:givenName David
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012636622347.55
    143 rdf:type schema:Person
    144 sg:person.012713775677.86 schema:familyName Mitchell
    145 schema:givenName John C.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012713775677.86
    147 rdf:type schema:Person
    148 sg:person.013270457265.00 schema:familyName Steffen
    149 schema:givenName Bernhard
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270457265.00
    151 rdf:type schema:Person
    152 sg:person.014510135557.74 schema:familyName Nierstrasz
    153 schema:givenName Oscar
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014510135557.74
    155 rdf:type schema:Person
    156 sg:person.014663420265.17 schema:familyName Sudan
    157 schema:givenName Madhu
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014663420265.17
    159 rdf:type schema:Person
    160 sg:person.016347323445.35 schema:familyName Terzopoulos
    161 schema:givenName Demetri
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35
    163 rdf:type schema:Person
    164 sg:person.016366027737.61 schema:familyName Rangan
    165 schema:givenName C. Pandu
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016366027737.61
    167 rdf:type schema:Person
    168 sg:person.07776170271.83 schema:familyName Naor
    169 schema:givenName Moni
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07776170271.83
    171 rdf:type schema:Person
    172 sg:pub.10.1007/bf01908075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022323983
    173 https://doi.org/10.1007/bf01908075
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s10844-008-0056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013173826
    176 https://doi.org/10.1007/s10844-008-0056-5
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1186/1471-2105-7-299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053396023
    179 https://doi.org/10.1186/1471-2105-7-299
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1093/bioinformatics/bth294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007329839
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1093/bioinformatics/btl065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017870433
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1109/tcbb.2008.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540639
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1137/1.9781611972795.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800375
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1145/1081870.1081960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053286008
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1155/2009/906865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024387828
    192 rdf:type schema:CreativeWork
    193 https://www.grid.ac/institutes/grid.449312.9 schema:alternateName Pontifical University of Salamanca
    194 schema:name Universidad Pontificia de Salamanca, C/Compañía 5, 37002 Salamanca, Spain
    195 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...