A Fast Visual Word Frequency - Inverse Image Frequency for Detector of Rare Concepts View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Emilie Dumont , Hervé Glotin , Sébastien Paris , Zhong-Qiu Zhao

ABSTRACT

In this paper we propose an original image retrieval model inspired from the vector space information retrieval model. We build for different features and different scales a visual concept dictionary composed by visual words intended to represent a semantic concept, and then we represent an image by the frequency of the visual words within the image. Then the image similarity is computed as in the textual domain where a textual document is represented by a vector in which each component is the frequency of occurrence of a specific textual word in that document. We then adapt the common text-based paradigm by using the TF-IDF weighting scheme to construct a WF-IIF weighting scheme in our Multi-Scale Visual Dictionary (MSVD) vector space model. The experiments are conducted on the 2009 Visual Concept Detection ImageCLEF Campaign. We compare WF-IIF to usual direct Support-Vector Machine (SVM) algorithm. We demonstrate that SVM and WF-IIF are in average over all the concept giving the same Area Under the Curve (AUC). We then discuss the fusion process that should enhance the whole system, and of some particular properties of MSVD, that shall be less dependant of the training set size of each concept than the SVM. More... »

PAGES

299-306

References to SciGraph publications

  • 2010. The University of Amsterdam’s Concept Detection System at ImageCLEF 2009 in MULTILINGUAL INFORMATION ACCESS EVALUATION II. MULTIMEDIA EXPERIMENTS
  • 2010. Overview of the CLEF 2009 Large-Scale Visual Concept Detection and Annotation Task in MULTILINGUAL INFORMATION ACCESS EVALUATION II. MULTIMEDIA EXPERIMENTS
  • 2008-01. Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2002-07-02. Categorizing Visual Contents by Matching Visual “Keywords” in VISUAL INFORMATION AND INFORMATION SYSTEMS
  • 2006-10. Mental image search by boolean composition of region categories in MULTIMEDIA TOOLS AND APPLICATIONS
  • Book

    TITLE

    Multilingual Information Access Evaluation II. Multimedia Experiments

    ISBN

    978-3-642-15750-9
    978-3-642-15751-6

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39

    DOI

    http://dx.doi.org/10.1007/978-3-642-15751-6_39

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048537843


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Sciences and Information Lab. LSIS UMR CNRS 6168, France", 
                "University of Sud Toulon-Var, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dumont", 
            "givenName": "Emilie", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Sciences and Information Lab. LSIS UMR CNRS 6168, France", 
                "University of Sud Toulon-Var, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glotin", 
            "givenName": "Herv\u00e9", 
            "id": "sg:person.016622300103.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Sciences and Information Lab. LSIS UMR CNRS 6168, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paris", 
            "givenName": "S\u00e9bastien", 
            "id": "sg:person.014371661147.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371661147.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.256896.6", 
              "name": [
                "College of Computer Science and Information Engineering, Hefei University of Technology, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Zhong-Qiu", 
            "id": "sg:person.016102547154.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102547154.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-15751-6_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005081003", 
              "https://doi.org/10.1007/978-3-642-15751-6_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15751-6_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005081003", 
              "https://doi.org/10.1007/978-3-642-15751-6_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fss.2004.07.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031236630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.cs.04.060190.002221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036425691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-007-0036-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037308766", 
              "https://doi.org/10.1007/s10851-007-0036-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-007-0036-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037308766", 
              "https://doi.org/10.1007/s10851-007-0036-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042663072", 
              "https://doi.org/10.1007/3-540-48762-x_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042663072", 
              "https://doi.org/10.1007/3-540-48762-x_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15751-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052874237", 
              "https://doi.org/10.1007/978-3-642-15751-6_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15751-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052874237", 
              "https://doi.org/10.1007/978-3-642-15751-6_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-006-0033-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053479040", 
              "https://doi.org/10.1007/s11042-006-0033-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2004.1421376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094993035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2009.5413350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095143406"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "In this paper we propose an original image retrieval model inspired from the vector space information retrieval model. We build for different features and different scales a visual concept dictionary composed by visual words intended to represent a semantic concept, and then we represent an image by the frequency of the visual words within the image. Then the image similarity is computed as in the textual domain where a textual document is represented by a vector in which each component is the frequency of occurrence of a specific textual word in that document. We then adapt the common text-based paradigm by using the TF-IDF weighting scheme to construct a WF-IIF weighting scheme in our Multi-Scale Visual Dictionary (MSVD) vector space model. The experiments are conducted on the 2009 Visual Concept Detection ImageCLEF Campaign. We compare WF-IIF to usual direct Support-Vector Machine (SVM) algorithm. We demonstrate that SVM and WF-IIF are in average over all the concept giving the same Area Under the Curve (AUC). We then discuss the fusion process that should enhance the whole system, and of some particular properties of MSVD, that shall be less dependant of the training set size of each concept than the SVM.", 
        "editor": [
          {
            "familyName": "Peters", 
            "givenName": "Carol", 
            "type": "Person"
          }, 
          {
            "familyName": "Caputo", 
            "givenName": "Barbara", 
            "type": "Person"
          }, 
          {
            "familyName": "Gonzalo", 
            "givenName": "Julio", 
            "type": "Person"
          }, 
          {
            "familyName": "Jones", 
            "givenName": "Gareth J. F.", 
            "type": "Person"
          }, 
          {
            "familyName": "Kalpathy-Cramer", 
            "givenName": "Jayashree", 
            "type": "Person"
          }, 
          {
            "familyName": "M\u00fcller", 
            "givenName": "Henning", 
            "type": "Person"
          }, 
          {
            "familyName": "Tsikrika", 
            "givenName": "Theodora", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-15751-6_39", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-15750-9", 
            "978-3-642-15751-6"
          ], 
          "name": "Multilingual Information Access Evaluation II. Multimedia Experiments", 
          "type": "Book"
        }, 
        "name": "A Fast Visual Word Frequency - Inverse Image Frequency for Detector of Rare Concepts", 
        "pagination": "299-306", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048537843"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-15751-6_39"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e739d36513f33c8881e961780df5986bd1bac8979b93a49137bd8a3a58c3b380"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-15751-6_39", 
          "https://app.dimensions.ai/details/publication/pub.1048537843"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000002.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-15751-6_39"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39'


     

    This table displays all metadata directly associated to this object as RDF triples.

    155 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-15751-6_39 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nd1e6bc2c573b4f86a8fdf2effd5bfdd6
    4 schema:citation sg:pub.10.1007/3-540-48762-x_46
    5 sg:pub.10.1007/978-3-642-15751-6_10
    6 sg:pub.10.1007/978-3-642-15751-6_32
    7 sg:pub.10.1007/s10851-007-0036-3
    8 sg:pub.10.1007/s11042-006-0033-3
    9 https://doi.org/10.1016/j.fss.2004.07.014
    10 https://doi.org/10.1109/icip.2004.1421376
    11 https://doi.org/10.1109/icip.2009.5413350
    12 https://doi.org/10.1146/annurev.cs.04.060190.002221
    13 schema:datePublished 2010
    14 schema:datePublishedReg 2010-01-01
    15 schema:description In this paper we propose an original image retrieval model inspired from the vector space information retrieval model. We build for different features and different scales a visual concept dictionary composed by visual words intended to represent a semantic concept, and then we represent an image by the frequency of the visual words within the image. Then the image similarity is computed as in the textual domain where a textual document is represented by a vector in which each component is the frequency of occurrence of a specific textual word in that document. We then adapt the common text-based paradigm by using the TF-IDF weighting scheme to construct a WF-IIF weighting scheme in our Multi-Scale Visual Dictionary (MSVD) vector space model. The experiments are conducted on the 2009 Visual Concept Detection ImageCLEF Campaign. We compare WF-IIF to usual direct Support-Vector Machine (SVM) algorithm. We demonstrate that SVM and WF-IIF are in average over all the concept giving the same Area Under the Curve (AUC). We then discuss the fusion process that should enhance the whole system, and of some particular properties of MSVD, that shall be less dependant of the training set size of each concept than the SVM.
    16 schema:editor Nfb49249c4fc043e997e8c82922955f65
    17 schema:genre chapter
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N76d2ed2c62754fdd8a30b17e455bbfd4
    21 schema:name A Fast Visual Word Frequency - Inverse Image Frequency for Detector of Rare Concepts
    22 schema:pagination 299-306
    23 schema:productId N0ea0e6fd46fc495686fbb96411e7049c
    24 Ne1b6b6f5d4074661995ab629eb39b971
    25 Ne3a597a80cd34303afec44421dad4807
    26 schema:publisher N6022e67e54f14aeab3ed9ffe5530f91c
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048537843
    28 https://doi.org/10.1007/978-3-642-15751-6_39
    29 schema:sdDatePublished 2019-04-16T08:23
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nb3a0ec38a2344ad888f0d07d05e6b739
    32 schema:url https://link.springer.com/10.1007%2F978-3-642-15751-6_39
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset chapters
    35 rdf:type schema:Chapter
    36 N0ea0e6fd46fc495686fbb96411e7049c schema:name dimensions_id
    37 schema:value pub.1048537843
    38 rdf:type schema:PropertyValue
    39 N1f2053b1d91c4e05b941a0676cd5383b rdf:first Ne016e05d30b748688942204c84522689
    40 rdf:rest rdf:nil
    41 N237080832d654eecb138918c0baa6235 rdf:first N49f98087868a448c99b6e846c88437d4
    42 rdf:rest Ndec5cea510314bdb9ab27303ffa6ec2d
    43 N24daef4ffdd045a58cf98dd81007b7c1 rdf:first N45c060f973cb413eac80b3f348114b89
    44 rdf:rest Nd5db7d83fba24b52b3c5652ae158dc92
    45 N3a2304b4dae142579b927416a09c82ff rdf:first Nc78785d70dbf4756b79b32a04d46a496
    46 rdf:rest N237080832d654eecb138918c0baa6235
    47 N3c72e8472ccd4e389e74bcbda901037a schema:familyName Müller
    48 schema:givenName Henning
    49 rdf:type schema:Person
    50 N3c7b3c9c43834aec96234bac2b464bfd schema:name Sciences and Information Lab. LSIS UMR CNRS 6168, France
    51 University of Sud Toulon-Var, France
    52 rdf:type schema:Organization
    53 N3e646c25ed8d4282afeeebae41d2f899 schema:name Sciences and Information Lab. LSIS UMR CNRS 6168, France
    54 University of Sud Toulon-Var, France
    55 rdf:type schema:Organization
    56 N45c060f973cb413eac80b3f348114b89 schema:familyName Caputo
    57 schema:givenName Barbara
    58 rdf:type schema:Person
    59 N49f98087868a448c99b6e846c88437d4 schema:familyName Kalpathy-Cramer
    60 schema:givenName Jayashree
    61 rdf:type schema:Person
    62 N6022e67e54f14aeab3ed9ffe5530f91c schema:location Berlin, Heidelberg
    63 schema:name Springer Berlin Heidelberg
    64 rdf:type schema:Organisation
    65 N6e680a7cbc7c4bd6a585bb2e365ac733 schema:name Sciences and Information Lab. LSIS UMR CNRS 6168, France
    66 rdf:type schema:Organization
    67 N710eca8840664bf69bc9f095d06a2b05 rdf:first sg:person.016102547154.53
    68 rdf:rest rdf:nil
    69 N76d2ed2c62754fdd8a30b17e455bbfd4 schema:isbn 978-3-642-15750-9
    70 978-3-642-15751-6
    71 schema:name Multilingual Information Access Evaluation II. Multimedia Experiments
    72 rdf:type schema:Book
    73 N8d06fed7ac15471aadfb8f06e194abe0 rdf:first sg:person.014371661147.40
    74 rdf:rest N710eca8840664bf69bc9f095d06a2b05
    75 Nb020861c49a94a6bbee3e8cd5a91bc2d rdf:first sg:person.016622300103.82
    76 rdf:rest N8d06fed7ac15471aadfb8f06e194abe0
    77 Nb3a0ec38a2344ad888f0d07d05e6b739 schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 Nc78785d70dbf4756b79b32a04d46a496 schema:familyName Jones
    80 schema:givenName Gareth J. F.
    81 rdf:type schema:Person
    82 Nd1e6bc2c573b4f86a8fdf2effd5bfdd6 rdf:first Nf4b188d3bab04716975c4d610d894f6e
    83 rdf:rest Nb020861c49a94a6bbee3e8cd5a91bc2d
    84 Nd5db7d83fba24b52b3c5652ae158dc92 rdf:first Ndbd637c914af40d8b73fadaaf74809a3
    85 rdf:rest N3a2304b4dae142579b927416a09c82ff
    86 Ndbd637c914af40d8b73fadaaf74809a3 schema:familyName Gonzalo
    87 schema:givenName Julio
    88 rdf:type schema:Person
    89 Ndec5cea510314bdb9ab27303ffa6ec2d rdf:first N3c72e8472ccd4e389e74bcbda901037a
    90 rdf:rest N1f2053b1d91c4e05b941a0676cd5383b
    91 Ne016e05d30b748688942204c84522689 schema:familyName Tsikrika
    92 schema:givenName Theodora
    93 rdf:type schema:Person
    94 Ne1b6b6f5d4074661995ab629eb39b971 schema:name readcube_id
    95 schema:value e739d36513f33c8881e961780df5986bd1bac8979b93a49137bd8a3a58c3b380
    96 rdf:type schema:PropertyValue
    97 Ne3a597a80cd34303afec44421dad4807 schema:name doi
    98 schema:value 10.1007/978-3-642-15751-6_39
    99 rdf:type schema:PropertyValue
    100 Nf4b188d3bab04716975c4d610d894f6e schema:affiliation N3e646c25ed8d4282afeeebae41d2f899
    101 schema:familyName Dumont
    102 schema:givenName Emilie
    103 rdf:type schema:Person
    104 Nfb49249c4fc043e997e8c82922955f65 rdf:first Nffc8df84272d4904a319290c4bf71daf
    105 rdf:rest N24daef4ffdd045a58cf98dd81007b7c1
    106 Nffc8df84272d4904a319290c4bf71daf schema:familyName Peters
    107 schema:givenName Carol
    108 rdf:type schema:Person
    109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Information and Computing Sciences
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Artificial Intelligence and Image Processing
    114 rdf:type schema:DefinedTerm
    115 sg:person.014371661147.40 schema:affiliation N6e680a7cbc7c4bd6a585bb2e365ac733
    116 schema:familyName Paris
    117 schema:givenName Sébastien
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371661147.40
    119 rdf:type schema:Person
    120 sg:person.016102547154.53 schema:affiliation https://www.grid.ac/institutes/grid.256896.6
    121 schema:familyName Zhao
    122 schema:givenName Zhong-Qiu
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102547154.53
    124 rdf:type schema:Person
    125 sg:person.016622300103.82 schema:affiliation N3c7b3c9c43834aec96234bac2b464bfd
    126 schema:familyName Glotin
    127 schema:givenName Hervé
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82
    129 rdf:type schema:Person
    130 sg:pub.10.1007/3-540-48762-x_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042663072
    131 https://doi.org/10.1007/3-540-48762-x_46
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-3-642-15751-6_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052874237
    134 https://doi.org/10.1007/978-3-642-15751-6_10
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/978-3-642-15751-6_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005081003
    137 https://doi.org/10.1007/978-3-642-15751-6_32
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s10851-007-0036-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037308766
    140 https://doi.org/10.1007/s10851-007-0036-3
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s11042-006-0033-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053479040
    143 https://doi.org/10.1007/s11042-006-0033-3
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.fss.2004.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031236630
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/icip.2004.1421376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094993035
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/icip.2009.5413350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095143406
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1146/annurev.cs.04.060190.002221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425691
    152 rdf:type schema:CreativeWork
    153 https://www.grid.ac/institutes/grid.256896.6 schema:alternateName Hefei University of Technology
    154 schema:name College of Computer Science and Information Engineering, Hefei University of Technology, China
    155 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...