A Fast Visual Word Frequency - Inverse Image Frequency for Detector of Rare Concepts View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Emilie Dumont , Hervé Glotin , Sébastien Paris , Zhong-Qiu Zhao

ABSTRACT

In this paper we propose an original image retrieval model inspired from the vector space information retrieval model. We build for different features and different scales a visual concept dictionary composed by visual words intended to represent a semantic concept, and then we represent an image by the frequency of the visual words within the image. Then the image similarity is computed as in the textual domain where a textual document is represented by a vector in which each component is the frequency of occurrence of a specific textual word in that document. We then adapt the common text-based paradigm by using the TF-IDF weighting scheme to construct a WF-IIF weighting scheme in our Multi-Scale Visual Dictionary (MSVD) vector space model. The experiments are conducted on the 2009 Visual Concept Detection ImageCLEF Campaign. We compare WF-IIF to usual direct Support-Vector Machine (SVM) algorithm. We demonstrate that SVM and WF-IIF are in average over all the concept giving the same Area Under the Curve (AUC). We then discuss the fusion process that should enhance the whole system, and of some particular properties of MSVD, that shall be less dependant of the training set size of each concept than the SVM. More... »

PAGES

299-306

References to SciGraph publications

  • 2010. The University of Amsterdam’s Concept Detection System at ImageCLEF 2009 in MULTILINGUAL INFORMATION ACCESS EVALUATION II. MULTIMEDIA EXPERIMENTS
  • 2010. Overview of the CLEF 2009 Large-Scale Visual Concept Detection and Annotation Task in MULTILINGUAL INFORMATION ACCESS EVALUATION II. MULTIMEDIA EXPERIMENTS
  • 2008-01. Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2002-07-02. Categorizing Visual Contents by Matching Visual “Keywords” in VISUAL INFORMATION AND INFORMATION SYSTEMS
  • 2006-10. Mental image search by boolean composition of region categories in MULTIMEDIA TOOLS AND APPLICATIONS
  • Book

    TITLE

    Multilingual Information Access Evaluation II. Multimedia Experiments

    ISBN

    978-3-642-15750-9
    978-3-642-15751-6

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39

    DOI

    http://dx.doi.org/10.1007/978-3-642-15751-6_39

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048537843


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Sciences and Information Lab. LSIS UMR CNRS 6168, France", 
                "University of Sud Toulon-Var, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dumont", 
            "givenName": "Emilie", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Sciences and Information Lab. LSIS UMR CNRS 6168, France", 
                "University of Sud Toulon-Var, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glotin", 
            "givenName": "Herv\u00e9", 
            "id": "sg:person.016622300103.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Sciences and Information Lab. LSIS UMR CNRS 6168, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paris", 
            "givenName": "S\u00e9bastien", 
            "id": "sg:person.014371661147.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371661147.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.256896.6", 
              "name": [
                "College of Computer Science and Information Engineering, Hefei University of Technology, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Zhong-Qiu", 
            "id": "sg:person.016102547154.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102547154.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-15751-6_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005081003", 
              "https://doi.org/10.1007/978-3-642-15751-6_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15751-6_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005081003", 
              "https://doi.org/10.1007/978-3-642-15751-6_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fss.2004.07.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031236630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.cs.04.060190.002221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036425691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-007-0036-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037308766", 
              "https://doi.org/10.1007/s10851-007-0036-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-007-0036-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037308766", 
              "https://doi.org/10.1007/s10851-007-0036-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042663072", 
              "https://doi.org/10.1007/3-540-48762-x_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042663072", 
              "https://doi.org/10.1007/3-540-48762-x_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15751-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052874237", 
              "https://doi.org/10.1007/978-3-642-15751-6_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15751-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052874237", 
              "https://doi.org/10.1007/978-3-642-15751-6_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-006-0033-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053479040", 
              "https://doi.org/10.1007/s11042-006-0033-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2004.1421376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094993035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2009.5413350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095143406"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "In this paper we propose an original image retrieval model inspired from the vector space information retrieval model. We build for different features and different scales a visual concept dictionary composed by visual words intended to represent a semantic concept, and then we represent an image by the frequency of the visual words within the image. Then the image similarity is computed as in the textual domain where a textual document is represented by a vector in which each component is the frequency of occurrence of a specific textual word in that document. We then adapt the common text-based paradigm by using the TF-IDF weighting scheme to construct a WF-IIF weighting scheme in our Multi-Scale Visual Dictionary (MSVD) vector space model. The experiments are conducted on the 2009 Visual Concept Detection ImageCLEF Campaign. We compare WF-IIF to usual direct Support-Vector Machine (SVM) algorithm. We demonstrate that SVM and WF-IIF are in average over all the concept giving the same Area Under the Curve (AUC). We then discuss the fusion process that should enhance the whole system, and of some particular properties of MSVD, that shall be less dependant of the training set size of each concept than the SVM.", 
        "editor": [
          {
            "familyName": "Peters", 
            "givenName": "Carol", 
            "type": "Person"
          }, 
          {
            "familyName": "Caputo", 
            "givenName": "Barbara", 
            "type": "Person"
          }, 
          {
            "familyName": "Gonzalo", 
            "givenName": "Julio", 
            "type": "Person"
          }, 
          {
            "familyName": "Jones", 
            "givenName": "Gareth J. F.", 
            "type": "Person"
          }, 
          {
            "familyName": "Kalpathy-Cramer", 
            "givenName": "Jayashree", 
            "type": "Person"
          }, 
          {
            "familyName": "M\u00fcller", 
            "givenName": "Henning", 
            "type": "Person"
          }, 
          {
            "familyName": "Tsikrika", 
            "givenName": "Theodora", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-15751-6_39", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-15750-9", 
            "978-3-642-15751-6"
          ], 
          "name": "Multilingual Information Access Evaluation II. Multimedia Experiments", 
          "type": "Book"
        }, 
        "name": "A Fast Visual Word Frequency - Inverse Image Frequency for Detector of Rare Concepts", 
        "pagination": "299-306", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048537843"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-15751-6_39"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e739d36513f33c8881e961780df5986bd1bac8979b93a49137bd8a3a58c3b380"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-15751-6_39", 
          "https://app.dimensions.ai/details/publication/pub.1048537843"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000002.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-15751-6_39"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39'


     

    This table displays all metadata directly associated to this object as RDF triples.

    155 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-15751-6_39 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ncc8311c707744c11b6066d0fc9275595
    4 schema:citation sg:pub.10.1007/3-540-48762-x_46
    5 sg:pub.10.1007/978-3-642-15751-6_10
    6 sg:pub.10.1007/978-3-642-15751-6_32
    7 sg:pub.10.1007/s10851-007-0036-3
    8 sg:pub.10.1007/s11042-006-0033-3
    9 https://doi.org/10.1016/j.fss.2004.07.014
    10 https://doi.org/10.1109/icip.2004.1421376
    11 https://doi.org/10.1109/icip.2009.5413350
    12 https://doi.org/10.1146/annurev.cs.04.060190.002221
    13 schema:datePublished 2010
    14 schema:datePublishedReg 2010-01-01
    15 schema:description In this paper we propose an original image retrieval model inspired from the vector space information retrieval model. We build for different features and different scales a visual concept dictionary composed by visual words intended to represent a semantic concept, and then we represent an image by the frequency of the visual words within the image. Then the image similarity is computed as in the textual domain where a textual document is represented by a vector in which each component is the frequency of occurrence of a specific textual word in that document. We then adapt the common text-based paradigm by using the TF-IDF weighting scheme to construct a WF-IIF weighting scheme in our Multi-Scale Visual Dictionary (MSVD) vector space model. The experiments are conducted on the 2009 Visual Concept Detection ImageCLEF Campaign. We compare WF-IIF to usual direct Support-Vector Machine (SVM) algorithm. We demonstrate that SVM and WF-IIF are in average over all the concept giving the same Area Under the Curve (AUC). We then discuss the fusion process that should enhance the whole system, and of some particular properties of MSVD, that shall be less dependant of the training set size of each concept than the SVM.
    16 schema:editor N1fc0075a01af478caf10f48244def0fe
    17 schema:genre chapter
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf Nf541f136ebd04934a28496c15cc03a21
    21 schema:name A Fast Visual Word Frequency - Inverse Image Frequency for Detector of Rare Concepts
    22 schema:pagination 299-306
    23 schema:productId N0a1841340f8345b58918aaef05463b4d
    24 N1e4e965d3ab94b87b25551cc18b0d19d
    25 Na8b364c204d14d7fa313a0a92561c459
    26 schema:publisher N9ff80960d5304b6da224dffbe937535f
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048537843
    28 https://doi.org/10.1007/978-3-642-15751-6_39
    29 schema:sdDatePublished 2019-04-16T08:23
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nc1f44443b19e40cf8f74276a41fcfe20
    32 schema:url https://link.springer.com/10.1007%2F978-3-642-15751-6_39
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset chapters
    35 rdf:type schema:Chapter
    36 N0a1841340f8345b58918aaef05463b4d schema:name dimensions_id
    37 schema:value pub.1048537843
    38 rdf:type schema:PropertyValue
    39 N1e4e965d3ab94b87b25551cc18b0d19d schema:name readcube_id
    40 schema:value e739d36513f33c8881e961780df5986bd1bac8979b93a49137bd8a3a58c3b380
    41 rdf:type schema:PropertyValue
    42 N1fc0075a01af478caf10f48244def0fe rdf:first Nc13a6580a82f4430a098a7025644ba59
    43 rdf:rest N71ba9d7482ae4e99952092c50a8c6d4a
    44 N23b3edd1434443b0ac22ce046434bbd9 schema:familyName Kalpathy-Cramer
    45 schema:givenName Jayashree
    46 rdf:type schema:Person
    47 N36e5b4e19f7b4f9bb1c2e9b2ca7ae1b8 schema:name Sciences and Information Lab. LSIS UMR CNRS 6168, France
    48 University of Sud Toulon-Var, France
    49 rdf:type schema:Organization
    50 N40c8a7dd685e489f9bbecb09cb5ae895 rdf:first N4f0d76d17fdf4ef8ba80cb0c6b5ae269
    51 rdf:rest N80f2e28e6bbf44a697232f813ac41c0b
    52 N4c32ce56243346a2879d65d1af71a221 schema:name Sciences and Information Lab. LSIS UMR CNRS 6168, France
    53 rdf:type schema:Organization
    54 N4f0d76d17fdf4ef8ba80cb0c6b5ae269 schema:familyName Müller
    55 schema:givenName Henning
    56 rdf:type schema:Person
    57 N4fbe9179df2a4018bbaccc85fe994027 schema:name Sciences and Information Lab. LSIS UMR CNRS 6168, France
    58 University of Sud Toulon-Var, France
    59 rdf:type schema:Organization
    60 N50830d0a74ea485fab76c30417f172e3 schema:familyName Tsikrika
    61 schema:givenName Theodora
    62 rdf:type schema:Person
    63 N663dc56ab7354309a640d30fa7308fa0 rdf:first sg:person.016102547154.53
    64 rdf:rest rdf:nil
    65 N71ba9d7482ae4e99952092c50a8c6d4a rdf:first Nbd1b1398a7bc4fb88fdbadc2e7f2ea97
    66 rdf:rest Na60aa68d30fa4ffead63b4098c3f975c
    67 N7d7014e38cfc4e3897444be3ed5bdac5 schema:affiliation N4fbe9179df2a4018bbaccc85fe994027
    68 schema:familyName Dumont
    69 schema:givenName Emilie
    70 rdf:type schema:Person
    71 N80f2e28e6bbf44a697232f813ac41c0b rdf:first N50830d0a74ea485fab76c30417f172e3
    72 rdf:rest rdf:nil
    73 N8e563509ca9545e6930ccab5eeeebd68 rdf:first sg:person.016622300103.82
    74 rdf:rest N98bca3ee04ea4cada651362b56b97724
    75 N916f07583eb245c1b43f04df69faacbf rdf:first Ne0bc30ff02524f8aaa84a12ddbacc1e6
    76 rdf:rest Nec525003023346a699ee2f25e91c5be1
    77 N98bca3ee04ea4cada651362b56b97724 rdf:first sg:person.014371661147.40
    78 rdf:rest N663dc56ab7354309a640d30fa7308fa0
    79 N9ff80960d5304b6da224dffbe937535f schema:location Berlin, Heidelberg
    80 schema:name Springer Berlin Heidelberg
    81 rdf:type schema:Organisation
    82 Na60aa68d30fa4ffead63b4098c3f975c rdf:first Nffb58d3bb0cd4b4cae05c9e2fc95cef3
    83 rdf:rest N916f07583eb245c1b43f04df69faacbf
    84 Na8b364c204d14d7fa313a0a92561c459 schema:name doi
    85 schema:value 10.1007/978-3-642-15751-6_39
    86 rdf:type schema:PropertyValue
    87 Nbd1b1398a7bc4fb88fdbadc2e7f2ea97 schema:familyName Caputo
    88 schema:givenName Barbara
    89 rdf:type schema:Person
    90 Nc13a6580a82f4430a098a7025644ba59 schema:familyName Peters
    91 schema:givenName Carol
    92 rdf:type schema:Person
    93 Nc1f44443b19e40cf8f74276a41fcfe20 schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 Ncc8311c707744c11b6066d0fc9275595 rdf:first N7d7014e38cfc4e3897444be3ed5bdac5
    96 rdf:rest N8e563509ca9545e6930ccab5eeeebd68
    97 Ne0bc30ff02524f8aaa84a12ddbacc1e6 schema:familyName Jones
    98 schema:givenName Gareth J. F.
    99 rdf:type schema:Person
    100 Nec525003023346a699ee2f25e91c5be1 rdf:first N23b3edd1434443b0ac22ce046434bbd9
    101 rdf:rest N40c8a7dd685e489f9bbecb09cb5ae895
    102 Nf541f136ebd04934a28496c15cc03a21 schema:isbn 978-3-642-15750-9
    103 978-3-642-15751-6
    104 schema:name Multilingual Information Access Evaluation II. Multimedia Experiments
    105 rdf:type schema:Book
    106 Nffb58d3bb0cd4b4cae05c9e2fc95cef3 schema:familyName Gonzalo
    107 schema:givenName Julio
    108 rdf:type schema:Person
    109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Information and Computing Sciences
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Artificial Intelligence and Image Processing
    114 rdf:type schema:DefinedTerm
    115 sg:person.014371661147.40 schema:affiliation N4c32ce56243346a2879d65d1af71a221
    116 schema:familyName Paris
    117 schema:givenName Sébastien
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371661147.40
    119 rdf:type schema:Person
    120 sg:person.016102547154.53 schema:affiliation https://www.grid.ac/institutes/grid.256896.6
    121 schema:familyName Zhao
    122 schema:givenName Zhong-Qiu
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102547154.53
    124 rdf:type schema:Person
    125 sg:person.016622300103.82 schema:affiliation N36e5b4e19f7b4f9bb1c2e9b2ca7ae1b8
    126 schema:familyName Glotin
    127 schema:givenName Hervé
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82
    129 rdf:type schema:Person
    130 sg:pub.10.1007/3-540-48762-x_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042663072
    131 https://doi.org/10.1007/3-540-48762-x_46
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-3-642-15751-6_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052874237
    134 https://doi.org/10.1007/978-3-642-15751-6_10
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/978-3-642-15751-6_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005081003
    137 https://doi.org/10.1007/978-3-642-15751-6_32
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s10851-007-0036-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037308766
    140 https://doi.org/10.1007/s10851-007-0036-3
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s11042-006-0033-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053479040
    143 https://doi.org/10.1007/s11042-006-0033-3
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.fss.2004.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031236630
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/icip.2004.1421376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094993035
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/icip.2009.5413350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095143406
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1146/annurev.cs.04.060190.002221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425691
    152 rdf:type schema:CreativeWork
    153 https://www.grid.ac/institutes/grid.256896.6 schema:alternateName Hefei University of Technology
    154 schema:name College of Computer Science and Information Engineering, Hefei University of Technology, China
    155 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...