A Fast Visual Word Frequency - Inverse Image Frequency for Detector of Rare Concepts View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Emilie Dumont , Hervé Glotin , Sébastien Paris , Zhong-Qiu Zhao

ABSTRACT

In this paper we propose an original image retrieval model inspired from the vector space information retrieval model. We build for different features and different scales a visual concept dictionary composed by visual words intended to represent a semantic concept, and then we represent an image by the frequency of the visual words within the image. Then the image similarity is computed as in the textual domain where a textual document is represented by a vector in which each component is the frequency of occurrence of a specific textual word in that document. We then adapt the common text-based paradigm by using the TF-IDF weighting scheme to construct a WF-IIF weighting scheme in our Multi-Scale Visual Dictionary (MSVD) vector space model. The experiments are conducted on the 2009 Visual Concept Detection ImageCLEF Campaign. We compare WF-IIF to usual direct Support-Vector Machine (SVM) algorithm. We demonstrate that SVM and WF-IIF are in average over all the concept giving the same Area Under the Curve (AUC). We then discuss the fusion process that should enhance the whole system, and of some particular properties of MSVD, that shall be less dependant of the training set size of each concept than the SVM. More... »

PAGES

299-306

References to SciGraph publications

  • 2010. The University of Amsterdam’s Concept Detection System at ImageCLEF 2009 in MULTILINGUAL INFORMATION ACCESS EVALUATION II. MULTIMEDIA EXPERIMENTS
  • 2010. Overview of the CLEF 2009 Large-Scale Visual Concept Detection and Annotation Task in MULTILINGUAL INFORMATION ACCESS EVALUATION II. MULTIMEDIA EXPERIMENTS
  • 2008-01. Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2002-07-02. Categorizing Visual Contents by Matching Visual “Keywords” in VISUAL INFORMATION AND INFORMATION SYSTEMS
  • 2006-10. Mental image search by boolean composition of region categories in MULTIMEDIA TOOLS AND APPLICATIONS
  • Book

    TITLE

    Multilingual Information Access Evaluation II. Multimedia Experiments

    ISBN

    978-3-642-15750-9
    978-3-642-15751-6

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39

    DOI

    http://dx.doi.org/10.1007/978-3-642-15751-6_39

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048537843


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Sciences and Information Lab. LSIS UMR CNRS 6168, France", 
                "University of Sud Toulon-Var, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dumont", 
            "givenName": "Emilie", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Sciences and Information Lab. LSIS UMR CNRS 6168, France", 
                "University of Sud Toulon-Var, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glotin", 
            "givenName": "Herv\u00e9", 
            "id": "sg:person.016622300103.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Sciences and Information Lab. LSIS UMR CNRS 6168, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paris", 
            "givenName": "S\u00e9bastien", 
            "id": "sg:person.014371661147.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371661147.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.256896.6", 
              "name": [
                "College of Computer Science and Information Engineering, Hefei University of Technology, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Zhong-Qiu", 
            "id": "sg:person.016102547154.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102547154.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-15751-6_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005081003", 
              "https://doi.org/10.1007/978-3-642-15751-6_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15751-6_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005081003", 
              "https://doi.org/10.1007/978-3-642-15751-6_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fss.2004.07.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031236630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.cs.04.060190.002221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036425691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-007-0036-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037308766", 
              "https://doi.org/10.1007/s10851-007-0036-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-007-0036-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037308766", 
              "https://doi.org/10.1007/s10851-007-0036-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042663072", 
              "https://doi.org/10.1007/3-540-48762-x_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042663072", 
              "https://doi.org/10.1007/3-540-48762-x_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15751-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052874237", 
              "https://doi.org/10.1007/978-3-642-15751-6_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15751-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052874237", 
              "https://doi.org/10.1007/978-3-642-15751-6_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-006-0033-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053479040", 
              "https://doi.org/10.1007/s11042-006-0033-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2004.1421376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094993035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2009.5413350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095143406"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "In this paper we propose an original image retrieval model inspired from the vector space information retrieval model. We build for different features and different scales a visual concept dictionary composed by visual words intended to represent a semantic concept, and then we represent an image by the frequency of the visual words within the image. Then the image similarity is computed as in the textual domain where a textual document is represented by a vector in which each component is the frequency of occurrence of a specific textual word in that document. We then adapt the common text-based paradigm by using the TF-IDF weighting scheme to construct a WF-IIF weighting scheme in our Multi-Scale Visual Dictionary (MSVD) vector space model. The experiments are conducted on the 2009 Visual Concept Detection ImageCLEF Campaign. We compare WF-IIF to usual direct Support-Vector Machine (SVM) algorithm. We demonstrate that SVM and WF-IIF are in average over all the concept giving the same Area Under the Curve (AUC). We then discuss the fusion process that should enhance the whole system, and of some particular properties of MSVD, that shall be less dependant of the training set size of each concept than the SVM.", 
        "editor": [
          {
            "familyName": "Peters", 
            "givenName": "Carol", 
            "type": "Person"
          }, 
          {
            "familyName": "Caputo", 
            "givenName": "Barbara", 
            "type": "Person"
          }, 
          {
            "familyName": "Gonzalo", 
            "givenName": "Julio", 
            "type": "Person"
          }, 
          {
            "familyName": "Jones", 
            "givenName": "Gareth J. F.", 
            "type": "Person"
          }, 
          {
            "familyName": "Kalpathy-Cramer", 
            "givenName": "Jayashree", 
            "type": "Person"
          }, 
          {
            "familyName": "M\u00fcller", 
            "givenName": "Henning", 
            "type": "Person"
          }, 
          {
            "familyName": "Tsikrika", 
            "givenName": "Theodora", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-15751-6_39", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-15750-9", 
            "978-3-642-15751-6"
          ], 
          "name": "Multilingual Information Access Evaluation II. Multimedia Experiments", 
          "type": "Book"
        }, 
        "name": "A Fast Visual Word Frequency - Inverse Image Frequency for Detector of Rare Concepts", 
        "pagination": "299-306", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048537843"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-15751-6_39"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e739d36513f33c8881e961780df5986bd1bac8979b93a49137bd8a3a58c3b380"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-15751-6_39", 
          "https://app.dimensions.ai/details/publication/pub.1048537843"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000002.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-15751-6_39"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15751-6_39'


     

    This table displays all metadata directly associated to this object as RDF triples.

    155 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-15751-6_39 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nb8cb73f0a95f41acb3faa9eda7cc66f3
    4 schema:citation sg:pub.10.1007/3-540-48762-x_46
    5 sg:pub.10.1007/978-3-642-15751-6_10
    6 sg:pub.10.1007/978-3-642-15751-6_32
    7 sg:pub.10.1007/s10851-007-0036-3
    8 sg:pub.10.1007/s11042-006-0033-3
    9 https://doi.org/10.1016/j.fss.2004.07.014
    10 https://doi.org/10.1109/icip.2004.1421376
    11 https://doi.org/10.1109/icip.2009.5413350
    12 https://doi.org/10.1146/annurev.cs.04.060190.002221
    13 schema:datePublished 2010
    14 schema:datePublishedReg 2010-01-01
    15 schema:description In this paper we propose an original image retrieval model inspired from the vector space information retrieval model. We build for different features and different scales a visual concept dictionary composed by visual words intended to represent a semantic concept, and then we represent an image by the frequency of the visual words within the image. Then the image similarity is computed as in the textual domain where a textual document is represented by a vector in which each component is the frequency of occurrence of a specific textual word in that document. We then adapt the common text-based paradigm by using the TF-IDF weighting scheme to construct a WF-IIF weighting scheme in our Multi-Scale Visual Dictionary (MSVD) vector space model. The experiments are conducted on the 2009 Visual Concept Detection ImageCLEF Campaign. We compare WF-IIF to usual direct Support-Vector Machine (SVM) algorithm. We demonstrate that SVM and WF-IIF are in average over all the concept giving the same Area Under the Curve (AUC). We then discuss the fusion process that should enhance the whole system, and of some particular properties of MSVD, that shall be less dependant of the training set size of each concept than the SVM.
    16 schema:editor N78db1b53e3014b8dae030c626ca0d0cd
    17 schema:genre chapter
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N2aff02a82dd14755af55b735aa0f244c
    21 schema:name A Fast Visual Word Frequency - Inverse Image Frequency for Detector of Rare Concepts
    22 schema:pagination 299-306
    23 schema:productId N01cb8013d45a460ba470c3f078b9b47d
    24 N27f9de08be3047498425e11f762b6ae4
    25 Nb20fe70fc2ab4b8ea3ea39c293ee8ec1
    26 schema:publisher Ne93df402cb9d4d4caf00760ff21ae4de
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048537843
    28 https://doi.org/10.1007/978-3-642-15751-6_39
    29 schema:sdDatePublished 2019-04-16T08:23
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N036c7934314f40078a411be9b5d81fd1
    32 schema:url https://link.springer.com/10.1007%2F978-3-642-15751-6_39
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset chapters
    35 rdf:type schema:Chapter
    36 N01cb8013d45a460ba470c3f078b9b47d schema:name dimensions_id
    37 schema:value pub.1048537843
    38 rdf:type schema:PropertyValue
    39 N036c7934314f40078a411be9b5d81fd1 schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N0a59795e057945368a79b9c9b64f7423 rdf:first sg:person.016102547154.53
    42 rdf:rest rdf:nil
    43 N1a3d884e03074a2c868295276a2cbce8 schema:name Sciences and Information Lab. LSIS UMR CNRS 6168, France
    44 University of Sud Toulon-Var, France
    45 rdf:type schema:Organization
    46 N27f9de08be3047498425e11f762b6ae4 schema:name readcube_id
    47 schema:value e739d36513f33c8881e961780df5986bd1bac8979b93a49137bd8a3a58c3b380
    48 rdf:type schema:PropertyValue
    49 N2aff02a82dd14755af55b735aa0f244c schema:isbn 978-3-642-15750-9
    50 978-3-642-15751-6
    51 schema:name Multilingual Information Access Evaluation II. Multimedia Experiments
    52 rdf:type schema:Book
    53 N3a17f541f74142c78909c89f7ea4bf78 schema:familyName Müller
    54 schema:givenName Henning
    55 rdf:type schema:Person
    56 N3a92519bc9cf4113b7f3cd4a0689b18a rdf:first Nc89135eda66048a480e33c394595a118
    57 rdf:rest N838e02ca66a14e73a1095693021cad78
    58 N3edd9b4df1c942d8a2e26e5aefe468da schema:familyName Tsikrika
    59 schema:givenName Theodora
    60 rdf:type schema:Person
    61 N55fcedf653b84f66bbf56215ee38916f rdf:first sg:person.016622300103.82
    62 rdf:rest Nb1ec9b3dbcd8423f9c550e355b9e438e
    63 N78db1b53e3014b8dae030c626ca0d0cd rdf:first Na9ad5245cfb34012b506d1fbc41edb1d
    64 rdf:rest Ne9b68590d11e42d6a646645eb91f20db
    65 N79aa11acc512436cbc225e5ba50d6333 schema:name Sciences and Information Lab. LSIS UMR CNRS 6168, France
    66 University of Sud Toulon-Var, France
    67 rdf:type schema:Organization
    68 N838d13048c624218aede201f0b2cf7d4 schema:familyName Jones
    69 schema:givenName Gareth J. F.
    70 rdf:type schema:Person
    71 N838e02ca66a14e73a1095693021cad78 rdf:first N3a17f541f74142c78909c89f7ea4bf78
    72 rdf:rest N8c342bf3a62b4132a0029004e9720ca3
    73 N8c342bf3a62b4132a0029004e9720ca3 rdf:first N3edd9b4df1c942d8a2e26e5aefe468da
    74 rdf:rest rdf:nil
    75 Na60b270597ec450b9fe70f5ba28ba356 rdf:first N838d13048c624218aede201f0b2cf7d4
    76 rdf:rest N3a92519bc9cf4113b7f3cd4a0689b18a
    77 Na8cebf18a801445687bf74fa627831e7 rdf:first Nc63712740d78412cb7b3ab8bf6268073
    78 rdf:rest Na60b270597ec450b9fe70f5ba28ba356
    79 Na9ad5245cfb34012b506d1fbc41edb1d schema:familyName Peters
    80 schema:givenName Carol
    81 rdf:type schema:Person
    82 Nb1ec9b3dbcd8423f9c550e355b9e438e rdf:first sg:person.014371661147.40
    83 rdf:rest N0a59795e057945368a79b9c9b64f7423
    84 Nb20fe70fc2ab4b8ea3ea39c293ee8ec1 schema:name doi
    85 schema:value 10.1007/978-3-642-15751-6_39
    86 rdf:type schema:PropertyValue
    87 Nb8cb73f0a95f41acb3faa9eda7cc66f3 rdf:first Nf2fc2ed01994477fbf1787c708325e6f
    88 rdf:rest N55fcedf653b84f66bbf56215ee38916f
    89 Nc63712740d78412cb7b3ab8bf6268073 schema:familyName Gonzalo
    90 schema:givenName Julio
    91 rdf:type schema:Person
    92 Nc89135eda66048a480e33c394595a118 schema:familyName Kalpathy-Cramer
    93 schema:givenName Jayashree
    94 rdf:type schema:Person
    95 Ncd891e7775ff4401a15e0291d51600d7 schema:name Sciences and Information Lab. LSIS UMR CNRS 6168, France
    96 rdf:type schema:Organization
    97 Ne93df402cb9d4d4caf00760ff21ae4de schema:location Berlin, Heidelberg
    98 schema:name Springer Berlin Heidelberg
    99 rdf:type schema:Organisation
    100 Ne9b68590d11e42d6a646645eb91f20db rdf:first Nf6aae5d258264558bf38f15a5b1db9d0
    101 rdf:rest Na8cebf18a801445687bf74fa627831e7
    102 Nf2fc2ed01994477fbf1787c708325e6f schema:affiliation N1a3d884e03074a2c868295276a2cbce8
    103 schema:familyName Dumont
    104 schema:givenName Emilie
    105 rdf:type schema:Person
    106 Nf6aae5d258264558bf38f15a5b1db9d0 schema:familyName Caputo
    107 schema:givenName Barbara
    108 rdf:type schema:Person
    109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Information and Computing Sciences
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Artificial Intelligence and Image Processing
    114 rdf:type schema:DefinedTerm
    115 sg:person.014371661147.40 schema:affiliation Ncd891e7775ff4401a15e0291d51600d7
    116 schema:familyName Paris
    117 schema:givenName Sébastien
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371661147.40
    119 rdf:type schema:Person
    120 sg:person.016102547154.53 schema:affiliation https://www.grid.ac/institutes/grid.256896.6
    121 schema:familyName Zhao
    122 schema:givenName Zhong-Qiu
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102547154.53
    124 rdf:type schema:Person
    125 sg:person.016622300103.82 schema:affiliation N79aa11acc512436cbc225e5ba50d6333
    126 schema:familyName Glotin
    127 schema:givenName Hervé
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82
    129 rdf:type schema:Person
    130 sg:pub.10.1007/3-540-48762-x_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042663072
    131 https://doi.org/10.1007/3-540-48762-x_46
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-3-642-15751-6_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052874237
    134 https://doi.org/10.1007/978-3-642-15751-6_10
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/978-3-642-15751-6_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005081003
    137 https://doi.org/10.1007/978-3-642-15751-6_32
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s10851-007-0036-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037308766
    140 https://doi.org/10.1007/s10851-007-0036-3
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s11042-006-0033-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053479040
    143 https://doi.org/10.1007/s11042-006-0033-3
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.fss.2004.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031236630
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/icip.2004.1421376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094993035
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/icip.2009.5413350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095143406
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1146/annurev.cs.04.060190.002221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425691
    152 rdf:type schema:CreativeWork
    153 https://www.grid.ac/institutes/grid.256896.6 schema:alternateName Hefei University of Technology
    154 schema:name College of Computer Science and Information Engineering, Hefei University of Technology, China
    155 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...