Joint Registration and Segmentation of Dynamic Cardiac Perfusion Images Using MRFs View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Dwarikanath Mahapatra , Ying Sun

ABSTRACT

In this paper we propose a Markov random field (MRF) based method for joint registration and segmentation of cardiac perfusion images, specifically the left ventricle (LV). MRFs are suitable for discrete labeling problems and the labels are defined as the joint occurrence of displacement vectors (for registration) and segmentation class. The data penalty is a combination of gradient information and mutual dependency of registration and segmentation information. The smoothness cost is a function of the interaction between the defined labels. Thus, the mutual dependency of registration and segmentation is captured in the objective function. Sub-pixel precision in registration and segmentation and a reduction in computation time are achieved by using a multiscale graph cut technique. The LV is first rigidly registered before applying our method. The method was tested on multiple real patient cardiac perfusion datasets having elastic deformations, intensity change, and poor contrast between LV and the myocardium. Compared to MRF based registration and graph cut segmentation, our method shows superior performance by including mutually beneficial registration and segmentation information. More... »

PAGES

493-501

References to SciGraph publications

  • 2006-11. Graph Cuts and Efficient N-D Image Segmentation in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1999-06-25. A Unified Framework for Atlas Matching Using Active Appearance Models in INFORMATION PROCESSING IN MEDICAL IMAGING
  • 2002-10-10. MAP MRF Joint Segmentation and Registration in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION — MICCAI 2002
  • 2004. Contrast-Invariant Registration of Cardiac and Renal MR Perfusion Images in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2004
  • 2008. Nonrigid Registration of Dynamic Renal MR Images Using a Saliency Based MRF Model in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2008
  • 2004. Joint Non-rigid Motion Estimation and Segmentation in COMBINATORIAL IMAGE ANALYSIS
  • 2005. A Variational PDE Based Level Set Method for a Simultaneous Segmentation and Non-rigid Registration in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2005
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60

    DOI

    http://dx.doi.org/10.1007/978-3-642-15705-9_60

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046773715

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/20879267


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Enhancement", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Imaging, Three-Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Angiography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pattern Recognition, Automated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Subtraction Technique", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ventricular Dysfunction, Left", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National University of Singapore", 
              "id": "https://www.grid.ac/institutes/grid.4280.e", 
              "name": [
                "Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mahapatra", 
            "givenName": "Dwarikanath", 
            "id": "sg:person.01100662063.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100662063.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Singapore", 
              "id": "https://www.grid.ac/institutes/grid.4280.e", 
              "name": [
                "Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Ying", 
            "id": "sg:person.01202200623.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202200623.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-30503-3_47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004131703", 
              "https://doi.org/10.1007/978-3-540-30503-3_47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30503-3_47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004131703", 
              "https://doi.org/10.1007/978-3-540-30503-3_47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cviu.2008.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011859897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-85988-8_92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013398100", 
              "https://doi.org/10.1007/978-3-540-85988-8_92"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-85988-8_92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013398100", 
              "https://doi.org/10.1007/978-3-540-85988-8_92"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48714-x_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017186083", 
              "https://doi.org/10.1007/3-540-48714-x_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48714-x_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017186083", 
              "https://doi.org/10.1007/3-540-48714-x_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11566465_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026210400", 
              "https://doi.org/10.1007/11566465_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11566465_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026210400", 
              "https://doi.org/10.1007/11566465_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-006-7934-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026896150", 
              "https://doi.org/10.1007/s11263-006-7934-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30135-6_110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030846366", 
              "https://doi.org/10.1007/978-3-540-30135-6_110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30135-6_110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030846366", 
              "https://doi.org/10.1007/978-3-540-30135-6_110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45786-0_72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031875676", 
              "https://doi.org/10.1007/3-540-45786-0_72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45786-0_72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031875676", 
              "https://doi.org/10.1007/3-540-45786-0_72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.969114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/42.796284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061170839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2002.808355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mmbia.2001.991698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093551240"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "In this paper we propose a Markov random field (MRF) based method for joint registration and segmentation of cardiac perfusion images, specifically the left ventricle (LV). MRFs are suitable for discrete labeling problems and the labels are defined as the joint occurrence of displacement vectors (for registration) and segmentation class. The data penalty is a combination of gradient information and mutual dependency of registration and segmentation information. The smoothness cost is a function of the interaction between the defined labels. Thus, the mutual dependency of registration and segmentation is captured in the objective function. Sub-pixel precision in registration and segmentation and a reduction in computation time are achieved by using a multiscale graph cut technique. The LV is first rigidly registered before applying our method. The method was tested on multiple real patient cardiac perfusion datasets having elastic deformations, intensity change, and poor contrast between LV and the myocardium. Compared to MRF based registration and graph cut segmentation, our method shows superior performance by including mutually beneficial registration and segmentation information.", 
        "editor": [
          {
            "familyName": "Jiang", 
            "givenName": "Tianzi", 
            "type": "Person"
          }, 
          {
            "familyName": "Navab", 
            "givenName": "Nassir", 
            "type": "Person"
          }, 
          {
            "familyName": "Pluim", 
            "givenName": "Josien P. W.", 
            "type": "Person"
          }, 
          {
            "familyName": "Viergever", 
            "givenName": "Max A.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-15705-9_60", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-642-15704-2", 
            "978-3-642-15705-9"
          ], 
          "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2010", 
          "type": "Book"
        }, 
        "name": "Joint Registration and Segmentation of Dynamic Cardiac Perfusion Images Using MRFs", 
        "pagination": "493-501", 
        "productId": [
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "20879267"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046773715"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-15705-9_60"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "decfbdc2b30e5278c640953774e1bbd0c70ef17a1145a2fd612716640b8096d7"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-15705-9_60", 
          "https://app.dimensions.ai/details/publication/pub.1046773715"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70061_00000002.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-15705-9_60"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60'


     

    This table displays all metadata directly associated to this object as RDF triples.

    182 TRIPLES      23 PREDICATES      52 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-15705-9_60 schema:about N00b111cbeb2141c5b25768ec89ef9a42
    2 N24601a19c69f45d8b27a2c792bc4fe59
    3 N419f6298921d4aef8d6c17d13ebef9c8
    4 N55dbabaa31a54d04be5070236ef24339
    5 N6b68041f25914904ada23b0c064f12f1
    6 N6f0a0359cc9e48c7a33e167ca51131a7
    7 N7373ab5612494305865bc61d8ae1ca77
    8 N74ebf4e163a740669f7034018da3efb8
    9 N7c9c50928d71487ba2d50c3e44c738f4
    10 Na0c49af01835411fadc143448d223529
    11 Ndaafcf17d41c401a8d9c6a967d56781f
    12 Ne79d4a8979b7443baa2400b256e05522
    13 anzsrc-for:08
    14 anzsrc-for:0801
    15 schema:author N72d83e32363e4c1595857571f1c586db
    16 schema:citation sg:pub.10.1007/11566465_36
    17 sg:pub.10.1007/3-540-45786-0_72
    18 sg:pub.10.1007/3-540-48714-x_24
    19 sg:pub.10.1007/978-3-540-30135-6_110
    20 sg:pub.10.1007/978-3-540-30503-3_47
    21 sg:pub.10.1007/978-3-540-85988-8_92
    22 sg:pub.10.1007/s11263-006-7934-5
    23 https://doi.org/10.1016/j.cviu.2008.06.006
    24 https://doi.org/10.1109/34.969114
    25 https://doi.org/10.1109/42.796284
    26 https://doi.org/10.1109/mmbia.2001.991698
    27 https://doi.org/10.1109/tmi.2002.808355
    28 schema:datePublished 2010
    29 schema:datePublishedReg 2010-01-01
    30 schema:description In this paper we propose a Markov random field (MRF) based method for joint registration and segmentation of cardiac perfusion images, specifically the left ventricle (LV). MRFs are suitable for discrete labeling problems and the labels are defined as the joint occurrence of displacement vectors (for registration) and segmentation class. The data penalty is a combination of gradient information and mutual dependency of registration and segmentation information. The smoothness cost is a function of the interaction between the defined labels. Thus, the mutual dependency of registration and segmentation is captured in the objective function. Sub-pixel precision in registration and segmentation and a reduction in computation time are achieved by using a multiscale graph cut technique. The LV is first rigidly registered before applying our method. The method was tested on multiple real patient cardiac perfusion datasets having elastic deformations, intensity change, and poor contrast between LV and the myocardium. Compared to MRF based registration and graph cut segmentation, our method shows superior performance by including mutually beneficial registration and segmentation information.
    31 schema:editor N53d9c988c4d944c1b513114f2b425b57
    32 schema:genre chapter
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N707bedbfe3244e27baf3d77797ce10f5
    36 schema:name Joint Registration and Segmentation of Dynamic Cardiac Perfusion Images Using MRFs
    37 schema:pagination 493-501
    38 schema:productId N1064fb0aeab244ad80896e27b15e1b9e
    39 N400cba89fb8444f0bef5af85c5212e6e
    40 N5f64eb2defd2429baa2f85dd793bc5eb
    41 Na0efe7adb9644da7bad761dbe140aa48
    42 schema:publisher N79a699d952704383bdcb36bac77a2a38
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046773715
    44 https://doi.org/10.1007/978-3-642-15705-9_60
    45 schema:sdDatePublished 2019-04-16T08:27
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N3b381e24a31b4d709e173005981a0328
    48 schema:url https://link.springer.com/10.1007%2F978-3-642-15705-9_60
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset chapters
    51 rdf:type schema:Chapter
    52 N00b111cbeb2141c5b25768ec89ef9a42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    53 schema:name Subtraction Technique
    54 rdf:type schema:DefinedTerm
    55 N1064fb0aeab244ad80896e27b15e1b9e schema:name pubmed_id
    56 schema:value 20879267
    57 rdf:type schema:PropertyValue
    58 N1bb7c24451c24befa485a931d4721a56 rdf:first sg:person.01202200623.06
    59 rdf:rest rdf:nil
    60 N24601a19c69f45d8b27a2c792bc4fe59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    61 schema:name Models, Biological
    62 rdf:type schema:DefinedTerm
    63 N3b381e24a31b4d709e173005981a0328 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N400cba89fb8444f0bef5af85c5212e6e schema:name readcube_id
    66 schema:value decfbdc2b30e5278c640953774e1bbd0c70ef17a1145a2fd612716640b8096d7
    67 rdf:type schema:PropertyValue
    68 N419f6298921d4aef8d6c17d13ebef9c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Pattern Recognition, Automated
    70 rdf:type schema:DefinedTerm
    71 N53d9c988c4d944c1b513114f2b425b57 rdf:first Nd3ce2961fab24c0db37ade8b3097f837
    72 rdf:rest N9a0db8ea7b7343f7ac5706cba6576f7c
    73 N55dbabaa31a54d04be5070236ef24339 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Sensitivity and Specificity
    75 rdf:type schema:DefinedTerm
    76 N5f64eb2defd2429baa2f85dd793bc5eb schema:name doi
    77 schema:value 10.1007/978-3-642-15705-9_60
    78 rdf:type schema:PropertyValue
    79 N6b68041f25914904ada23b0c064f12f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Algorithms
    81 rdf:type schema:DefinedTerm
    82 N6f0a0359cc9e48c7a33e167ca51131a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Image Interpretation, Computer-Assisted
    84 rdf:type schema:DefinedTerm
    85 N707bedbfe3244e27baf3d77797ce10f5 schema:isbn 978-3-642-15704-2
    86 978-3-642-15705-9
    87 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010
    88 rdf:type schema:Book
    89 N72d83e32363e4c1595857571f1c586db rdf:first sg:person.01100662063.91
    90 rdf:rest N1bb7c24451c24befa485a931d4721a56
    91 N7373ab5612494305865bc61d8ae1ca77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Imaging, Three-Dimensional
    93 rdf:type schema:DefinedTerm
    94 N74ebf4e163a740669f7034018da3efb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Ventricular Dysfunction, Left
    96 rdf:type schema:DefinedTerm
    97 N79a699d952704383bdcb36bac77a2a38 schema:location Berlin, Heidelberg
    98 schema:name Springer Berlin Heidelberg
    99 rdf:type schema:Organisation
    100 N7c9c50928d71487ba2d50c3e44c738f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Reproducibility of Results
    102 rdf:type schema:DefinedTerm
    103 N8ce733c651ad46f5bee9811a4b5585c8 rdf:first Nf94c5e8092a940ff9399f45df8ad3190
    104 rdf:rest N8d839203e30b48ffb0698b500ac372c8
    105 N8d839203e30b48ffb0698b500ac372c8 rdf:first Na6e2ab63d43848d38fab4e4e24f1569b
    106 rdf:rest rdf:nil
    107 N9a0db8ea7b7343f7ac5706cba6576f7c rdf:first Ncd6b3bf4a41644f3aa135c05e942b0c0
    108 rdf:rest N8ce733c651ad46f5bee9811a4b5585c8
    109 Na0c49af01835411fadc143448d223529 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Magnetic Resonance Angiography
    111 rdf:type schema:DefinedTerm
    112 Na0efe7adb9644da7bad761dbe140aa48 schema:name dimensions_id
    113 schema:value pub.1046773715
    114 rdf:type schema:PropertyValue
    115 Na6e2ab63d43848d38fab4e4e24f1569b schema:familyName Viergever
    116 schema:givenName Max A.
    117 rdf:type schema:Person
    118 Ncd6b3bf4a41644f3aa135c05e942b0c0 schema:familyName Navab
    119 schema:givenName Nassir
    120 rdf:type schema:Person
    121 Nd3ce2961fab24c0db37ade8b3097f837 schema:familyName Jiang
    122 schema:givenName Tianzi
    123 rdf:type schema:Person
    124 Ndaafcf17d41c401a8d9c6a967d56781f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Image Enhancement
    126 rdf:type schema:DefinedTerm
    127 Ne79d4a8979b7443baa2400b256e05522 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Humans
    129 rdf:type schema:DefinedTerm
    130 Nf94c5e8092a940ff9399f45df8ad3190 schema:familyName Pluim
    131 schema:givenName Josien P. W.
    132 rdf:type schema:Person
    133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Information and Computing Sciences
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Artificial Intelligence and Image Processing
    138 rdf:type schema:DefinedTerm
    139 sg:person.01100662063.91 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
    140 schema:familyName Mahapatra
    141 schema:givenName Dwarikanath
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100662063.91
    143 rdf:type schema:Person
    144 sg:person.01202200623.06 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
    145 schema:familyName Sun
    146 schema:givenName Ying
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202200623.06
    148 rdf:type schema:Person
    149 sg:pub.10.1007/11566465_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026210400
    150 https://doi.org/10.1007/11566465_36
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/3-540-45786-0_72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031875676
    153 https://doi.org/10.1007/3-540-45786-0_72
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/3-540-48714-x_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017186083
    156 https://doi.org/10.1007/3-540-48714-x_24
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/978-3-540-30135-6_110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030846366
    159 https://doi.org/10.1007/978-3-540-30135-6_110
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/978-3-540-30503-3_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004131703
    162 https://doi.org/10.1007/978-3-540-30503-3_47
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/978-3-540-85988-8_92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013398100
    165 https://doi.org/10.1007/978-3-540-85988-8_92
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s11263-006-7934-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026896150
    168 https://doi.org/10.1007/s11263-006-7934-5
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.cviu.2008.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011859897
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/34.969114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157335
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/42.796284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170839
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/mmbia.2001.991698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093551240
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1109/tmi.2002.808355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694367
    179 rdf:type schema:CreativeWork
    180 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
    181 schema:name Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
    182 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...