Ontology type: schema:Chapter Open Access: True
2010
AUTHORSDwarikanath Mahapatra , Ying Sun
ABSTRACTIn this paper we propose a Markov random field (MRF) based method for joint registration and segmentation of cardiac perfusion images, specifically the left ventricle (LV). MRFs are suitable for discrete labeling problems and the labels are defined as the joint occurrence of displacement vectors (for registration) and segmentation class. The data penalty is a combination of gradient information and mutual dependency of registration and segmentation information. The smoothness cost is a function of the interaction between the defined labels. Thus, the mutual dependency of registration and segmentation is captured in the objective function. Sub-pixel precision in registration and segmentation and a reduction in computation time are achieved by using a multiscale graph cut technique. The LV is first rigidly registered before applying our method. The method was tested on multiple real patient cardiac perfusion datasets having elastic deformations, intensity change, and poor contrast between LV and the myocardium. Compared to MRF based registration and graph cut segmentation, our method shows superior performance by including mutually beneficial registration and segmentation information. More... »
PAGES493-501
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010
ISBN
978-3-642-15704-2
978-3-642-15705-9
http://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60
DOIhttp://dx.doi.org/10.1007/978-3-642-15705-9_60
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1046773715
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/20879267
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Algorithms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Image Enhancement",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Image Interpretation, Computer-Assisted",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Imaging, Three-Dimensional",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Magnetic Resonance Angiography",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Biological",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Pattern Recognition, Automated",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Reproducibility of Results",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sensitivity and Specificity",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Subtraction Technique",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Ventricular Dysfunction, Left",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "National University of Singapore",
"id": "https://www.grid.ac/institutes/grid.4280.e",
"name": [
"Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore"
],
"type": "Organization"
},
"familyName": "Mahapatra",
"givenName": "Dwarikanath",
"id": "sg:person.01100662063.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100662063.91"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National University of Singapore",
"id": "https://www.grid.ac/institutes/grid.4280.e",
"name": [
"Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore"
],
"type": "Organization"
},
"familyName": "Sun",
"givenName": "Ying",
"id": "sg:person.01202200623.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202200623.06"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-540-30503-3_47",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004131703",
"https://doi.org/10.1007/978-3-540-30503-3_47"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-30503-3_47",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004131703",
"https://doi.org/10.1007/978-3-540-30503-3_47"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cviu.2008.06.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011859897"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-85988-8_92",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013398100",
"https://doi.org/10.1007/978-3-540-85988-8_92"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-85988-8_92",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013398100",
"https://doi.org/10.1007/978-3-540-85988-8_92"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-48714-x_24",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017186083",
"https://doi.org/10.1007/3-540-48714-x_24"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-48714-x_24",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017186083",
"https://doi.org/10.1007/3-540-48714-x_24"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11566465_36",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026210400",
"https://doi.org/10.1007/11566465_36"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11566465_36",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026210400",
"https://doi.org/10.1007/11566465_36"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11263-006-7934-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026896150",
"https://doi.org/10.1007/s11263-006-7934-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-30135-6_110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030846366",
"https://doi.org/10.1007/978-3-540-30135-6_110"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-30135-6_110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030846366",
"https://doi.org/10.1007/978-3-540-30135-6_110"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-45786-0_72",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031875676",
"https://doi.org/10.1007/3-540-45786-0_72"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-45786-0_72",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031875676",
"https://doi.org/10.1007/3-540-45786-0_72"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/34.969114",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061157335"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/42.796284",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061170839"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tmi.2002.808355",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061694367"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/mmbia.2001.991698",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093551240"
],
"type": "CreativeWork"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "In this paper we propose a Markov random field (MRF) based method for joint registration and segmentation of cardiac perfusion images, specifically the left ventricle (LV). MRFs are suitable for discrete labeling problems and the labels are defined as the joint occurrence of displacement vectors (for registration) and segmentation class. The data penalty is a combination of gradient information and mutual dependency of registration and segmentation information. The smoothness cost is a function of the interaction between the defined labels. Thus, the mutual dependency of registration and segmentation is captured in the objective function. Sub-pixel precision in registration and segmentation and a reduction in computation time are achieved by using a multiscale graph cut technique. The LV is first rigidly registered before applying our method. The method was tested on multiple real patient cardiac perfusion datasets having elastic deformations, intensity change, and poor contrast between LV and the myocardium. Compared to MRF based registration and graph cut segmentation, our method shows superior performance by including mutually beneficial registration and segmentation information.",
"editor": [
{
"familyName": "Jiang",
"givenName": "Tianzi",
"type": "Person"
},
{
"familyName": "Navab",
"givenName": "Nassir",
"type": "Person"
},
{
"familyName": "Pluim",
"givenName": "Josien P. W.",
"type": "Person"
},
{
"familyName": "Viergever",
"givenName": "Max A.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-15705-9_60",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-15704-2",
"978-3-642-15705-9"
],
"name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2010",
"type": "Book"
},
"name": "Joint Registration and Segmentation of Dynamic Cardiac Perfusion Images Using MRFs",
"pagination": "493-501",
"productId": [
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"20879267"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1046773715"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-15705-9_60"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"decfbdc2b30e5278c640953774e1bbd0c70ef17a1145a2fd612716640b8096d7"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-15705-9_60",
"https://app.dimensions.ai/details/publication/pub.1046773715"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T08:27",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70061_00000002.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-642-15705-9_60"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60'
This table displays all metadata directly associated to this object as RDF triples.
182 TRIPLES
23 PREDICATES
52 URIs
33 LITERALS
21 BLANK NODES