Joint Registration and Segmentation of Dynamic Cardiac Perfusion Images Using MRFs View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Dwarikanath Mahapatra , Ying Sun

ABSTRACT

In this paper we propose a Markov random field (MRF) based method for joint registration and segmentation of cardiac perfusion images, specifically the left ventricle (LV). MRFs are suitable for discrete labeling problems and the labels are defined as the joint occurrence of displacement vectors (for registration) and segmentation class. The data penalty is a combination of gradient information and mutual dependency of registration and segmentation information. The smoothness cost is a function of the interaction between the defined labels. Thus, the mutual dependency of registration and segmentation is captured in the objective function. Sub-pixel precision in registration and segmentation and a reduction in computation time are achieved by using a multiscale graph cut technique. The LV is first rigidly registered before applying our method. The method was tested on multiple real patient cardiac perfusion datasets having elastic deformations, intensity change, and poor contrast between LV and the myocardium. Compared to MRF based registration and graph cut segmentation, our method shows superior performance by including mutually beneficial registration and segmentation information. More... »

PAGES

493-501

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60

DOI

http://dx.doi.org/10.1007/978-3-642-15705-9_60

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046773715

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20879267


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Dysfunction, Left", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahapatra", 
        "givenName": "Dwarikanath", 
        "id": "sg:person.01100662063.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100662063.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Ying", 
        "id": "sg:person.01202200623.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202200623.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-30503-3_47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004131703", 
          "https://doi.org/10.1007/978-3-540-30503-3_47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30503-3_47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004131703", 
          "https://doi.org/10.1007/978-3-540-30503-3_47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2008.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011859897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85988-8_92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013398100", 
          "https://doi.org/10.1007/978-3-540-85988-8_92"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85988-8_92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013398100", 
          "https://doi.org/10.1007/978-3-540-85988-8_92"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48714-x_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017186083", 
          "https://doi.org/10.1007/3-540-48714-x_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48714-x_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017186083", 
          "https://doi.org/10.1007/3-540-48714-x_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11566465_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026210400", 
          "https://doi.org/10.1007/11566465_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11566465_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026210400", 
          "https://doi.org/10.1007/11566465_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-006-7934-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026896150", 
          "https://doi.org/10.1007/s11263-006-7934-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30135-6_110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030846366", 
          "https://doi.org/10.1007/978-3-540-30135-6_110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30135-6_110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030846366", 
          "https://doi.org/10.1007/978-3-540-30135-6_110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45786-0_72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031875676", 
          "https://doi.org/10.1007/3-540-45786-0_72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45786-0_72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031875676", 
          "https://doi.org/10.1007/3-540-45786-0_72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.969114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.796284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2002.808355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmbia.2001.991698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093551240"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "In this paper we propose a Markov random field (MRF) based method for joint registration and segmentation of cardiac perfusion images, specifically the left ventricle (LV). MRFs are suitable for discrete labeling problems and the labels are defined as the joint occurrence of displacement vectors (for registration) and segmentation class. The data penalty is a combination of gradient information and mutual dependency of registration and segmentation information. The smoothness cost is a function of the interaction between the defined labels. Thus, the mutual dependency of registration and segmentation is captured in the objective function. Sub-pixel precision in registration and segmentation and a reduction in computation time are achieved by using a multiscale graph cut technique. The LV is first rigidly registered before applying our method. The method was tested on multiple real patient cardiac perfusion datasets having elastic deformations, intensity change, and poor contrast between LV and the myocardium. Compared to MRF based registration and graph cut segmentation, our method shows superior performance by including mutually beneficial registration and segmentation information.", 
    "editor": [
      {
        "familyName": "Jiang", 
        "givenName": "Tianzi", 
        "type": "Person"
      }, 
      {
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "type": "Person"
      }, 
      {
        "familyName": "Pluim", 
        "givenName": "Josien P. W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Viergever", 
        "givenName": "Max A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15705-9_60", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15704-2", 
        "978-3-642-15705-9"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2010", 
      "type": "Book"
    }, 
    "name": "Joint Registration and Segmentation of Dynamic Cardiac Perfusion Images Using MRFs", 
    "pagination": "493-501", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20879267"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046773715"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15705-9_60"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "decfbdc2b30e5278c640953774e1bbd0c70ef17a1145a2fd612716640b8096d7"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15705-9_60", 
      "https://app.dimensions.ai/details/publication/pub.1046773715"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70061_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-15705-9_60"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_60'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      23 PREDICATES      52 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15705-9_60 schema:about N1f3c23cd2aa54fde93ee5e033e8b8423
2 N2216ed87a3c242308477e766bc540af8
3 N2f448fa3b9cc4962b633fc86e5dd5919
4 N322927152fc944389ff9034dfc8f492d
5 N37e8f74fa05d46fcbaa0c64ba6fb4867
6 N3fa3591073914be2b63ba91d1b02bc0c
7 N53a97d6a251d4907bd3dd0beabf880bc
8 N5fd99ae3ecff4a50940fb272d19818d0
9 N9716e596d3d1417d8372099ed33600d2
10 Nddf7e15b1e5c459da2965174589996cd
11 Nf016d560ece546d8ae9d306e029b0a29
12 Nfe6e246a7ea1424fa86516c6bf60bbcf
13 anzsrc-for:08
14 anzsrc-for:0801
15 schema:author N6f03c2c237a441adb9bea82905c8e1a5
16 schema:citation sg:pub.10.1007/11566465_36
17 sg:pub.10.1007/3-540-45786-0_72
18 sg:pub.10.1007/3-540-48714-x_24
19 sg:pub.10.1007/978-3-540-30135-6_110
20 sg:pub.10.1007/978-3-540-30503-3_47
21 sg:pub.10.1007/978-3-540-85988-8_92
22 sg:pub.10.1007/s11263-006-7934-5
23 https://doi.org/10.1016/j.cviu.2008.06.006
24 https://doi.org/10.1109/34.969114
25 https://doi.org/10.1109/42.796284
26 https://doi.org/10.1109/mmbia.2001.991698
27 https://doi.org/10.1109/tmi.2002.808355
28 schema:datePublished 2010
29 schema:datePublishedReg 2010-01-01
30 schema:description In this paper we propose a Markov random field (MRF) based method for joint registration and segmentation of cardiac perfusion images, specifically the left ventricle (LV). MRFs are suitable for discrete labeling problems and the labels are defined as the joint occurrence of displacement vectors (for registration) and segmentation class. The data penalty is a combination of gradient information and mutual dependency of registration and segmentation information. The smoothness cost is a function of the interaction between the defined labels. Thus, the mutual dependency of registration and segmentation is captured in the objective function. Sub-pixel precision in registration and segmentation and a reduction in computation time are achieved by using a multiscale graph cut technique. The LV is first rigidly registered before applying our method. The method was tested on multiple real patient cardiac perfusion datasets having elastic deformations, intensity change, and poor contrast between LV and the myocardium. Compared to MRF based registration and graph cut segmentation, our method shows superior performance by including mutually beneficial registration and segmentation information.
31 schema:editor N0cebf75dbe9f4b01a1c5553d2738de85
32 schema:genre chapter
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N68d3287d6ad448958758b07e5031fc62
36 schema:name Joint Registration and Segmentation of Dynamic Cardiac Perfusion Images Using MRFs
37 schema:pagination 493-501
38 schema:productId N3436f941cd29421e8738404a7d18285e
39 N48266c9689a448e4b32756b63202fceb
40 N5a6013f3b1e9449b93444560586f2840
41 N993de616944049bd816a860b48c919c1
42 schema:publisher N542a559df2504edbad7e60b195a34d46
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046773715
44 https://doi.org/10.1007/978-3-642-15705-9_60
45 schema:sdDatePublished 2019-04-16T08:27
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nc12848736b534b99a92c23d2a9fb8c7c
48 schema:url https://link.springer.com/10.1007%2F978-3-642-15705-9_60
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N05244fd2dd8842099a96e493cb6345c9 rdf:first N68550ebc7e8c4382b80f95c6a1145c9f
53 rdf:rest N108dcfd2921b41269f47c164c67b2071
54 N0cebf75dbe9f4b01a1c5553d2738de85 rdf:first Nfc4ae7b0b86b45a494a931969461cc18
55 rdf:rest N60e5d2ba51a0460f97467c7cb80c8309
56 N0f897dfec3ba44cfa539b233e315b665 schema:familyName Viergever
57 schema:givenName Max A.
58 rdf:type schema:Person
59 N108dcfd2921b41269f47c164c67b2071 rdf:first N0f897dfec3ba44cfa539b233e315b665
60 rdf:rest rdf:nil
61 N1f3c23cd2aa54fde93ee5e033e8b8423 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Image Enhancement
63 rdf:type schema:DefinedTerm
64 N2216ed87a3c242308477e766bc540af8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Sensitivity and Specificity
66 rdf:type schema:DefinedTerm
67 N2f448fa3b9cc4962b633fc86e5dd5919 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Subtraction Technique
69 rdf:type schema:DefinedTerm
70 N322927152fc944389ff9034dfc8f492d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Reproducibility of Results
72 rdf:type schema:DefinedTerm
73 N3436f941cd29421e8738404a7d18285e schema:name pubmed_id
74 schema:value 20879267
75 rdf:type schema:PropertyValue
76 N37e8f74fa05d46fcbaa0c64ba6fb4867 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Ventricular Dysfunction, Left
78 rdf:type schema:DefinedTerm
79 N3fa3591073914be2b63ba91d1b02bc0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Image Interpretation, Computer-Assisted
81 rdf:type schema:DefinedTerm
82 N48266c9689a448e4b32756b63202fceb schema:name readcube_id
83 schema:value decfbdc2b30e5278c640953774e1bbd0c70ef17a1145a2fd612716640b8096d7
84 rdf:type schema:PropertyValue
85 N53a97d6a251d4907bd3dd0beabf880bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Algorithms
87 rdf:type schema:DefinedTerm
88 N542a559df2504edbad7e60b195a34d46 schema:location Berlin, Heidelberg
89 schema:name Springer Berlin Heidelberg
90 rdf:type schema:Organisation
91 N5a6013f3b1e9449b93444560586f2840 schema:name doi
92 schema:value 10.1007/978-3-642-15705-9_60
93 rdf:type schema:PropertyValue
94 N5fd99ae3ecff4a50940fb272d19818d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Magnetic Resonance Angiography
96 rdf:type schema:DefinedTerm
97 N60e5d2ba51a0460f97467c7cb80c8309 rdf:first N78b282f3939745abaf296554a070205b
98 rdf:rest N05244fd2dd8842099a96e493cb6345c9
99 N68550ebc7e8c4382b80f95c6a1145c9f schema:familyName Pluim
100 schema:givenName Josien P. W.
101 rdf:type schema:Person
102 N68d3287d6ad448958758b07e5031fc62 schema:isbn 978-3-642-15704-2
103 978-3-642-15705-9
104 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010
105 rdf:type schema:Book
106 N6f03c2c237a441adb9bea82905c8e1a5 rdf:first sg:person.01100662063.91
107 rdf:rest Nbd1813231c0c4cc396307681007f252b
108 N78b282f3939745abaf296554a070205b schema:familyName Navab
109 schema:givenName Nassir
110 rdf:type schema:Person
111 N9716e596d3d1417d8372099ed33600d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Humans
113 rdf:type schema:DefinedTerm
114 N993de616944049bd816a860b48c919c1 schema:name dimensions_id
115 schema:value pub.1046773715
116 rdf:type schema:PropertyValue
117 Nbd1813231c0c4cc396307681007f252b rdf:first sg:person.01202200623.06
118 rdf:rest rdf:nil
119 Nc12848736b534b99a92c23d2a9fb8c7c schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Nddf7e15b1e5c459da2965174589996cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Models, Biological
123 rdf:type schema:DefinedTerm
124 Nf016d560ece546d8ae9d306e029b0a29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Pattern Recognition, Automated
126 rdf:type schema:DefinedTerm
127 Nfc4ae7b0b86b45a494a931969461cc18 schema:familyName Jiang
128 schema:givenName Tianzi
129 rdf:type schema:Person
130 Nfe6e246a7ea1424fa86516c6bf60bbcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Imaging, Three-Dimensional
132 rdf:type schema:DefinedTerm
133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
134 schema:name Information and Computing Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
137 schema:name Artificial Intelligence and Image Processing
138 rdf:type schema:DefinedTerm
139 sg:person.01100662063.91 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
140 schema:familyName Mahapatra
141 schema:givenName Dwarikanath
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100662063.91
143 rdf:type schema:Person
144 sg:person.01202200623.06 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
145 schema:familyName Sun
146 schema:givenName Ying
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202200623.06
148 rdf:type schema:Person
149 sg:pub.10.1007/11566465_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026210400
150 https://doi.org/10.1007/11566465_36
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/3-540-45786-0_72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031875676
153 https://doi.org/10.1007/3-540-45786-0_72
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/3-540-48714-x_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017186083
156 https://doi.org/10.1007/3-540-48714-x_24
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/978-3-540-30135-6_110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030846366
159 https://doi.org/10.1007/978-3-540-30135-6_110
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/978-3-540-30503-3_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004131703
162 https://doi.org/10.1007/978-3-540-30503-3_47
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/978-3-540-85988-8_92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013398100
165 https://doi.org/10.1007/978-3-540-85988-8_92
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s11263-006-7934-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026896150
168 https://doi.org/10.1007/s11263-006-7934-5
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.cviu.2008.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011859897
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/34.969114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157335
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/42.796284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170839
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/mmbia.2001.991698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093551240
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tmi.2002.808355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694367
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
181 schema:name Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...