Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT: Application to Aortic Valve Implantation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Yefeng Zheng , Matthias John , Rui Liao , Jan Boese , Uwe Kirschstein , Bogdan Georgescu , S. Kevin Zhou , Jörg Kempfert , Thomas Walther , Gernot Brockmann , Dorin Comaniciu

ABSTRACT

C-arm CT is an emerging imaging technique in transcatheter aortic valve implantation (TAVI) surgery. Automatic aorta segmentation and valve landmark detection in a C-arm CT volume has important applications in TAVI by providing valuable 3D measurements for surgery planning. Overlaying 3D segmentation onto 2D real time fluoroscopic images also provides critical visual guidance during the surgery. In this paper, we present a part-based aorta segmentation approach, which can handle aorta structure variation in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three aortic hinge points, three commissure points, and two coronary ostia) are also detected automatically in our system. Under the guidance of the detected landmarks, the physicians can deploy the prosthetic valve properly. Our approach is robust under variations of contrast agent. Taking about 1.4 seconds to process one volume, it is also computationally efficient. More... »

PAGES

476-483

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_58

DOI

http://dx.doi.org/10.1007/978-3-642-15705-9_58

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034443511

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20879265


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aorta", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aortography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Valve Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Valve Prosthesis Implantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surgery, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yefeng", 
        "id": "sg:person.0767211426.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767211426.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Healthcare Sector, Siemens AG, Forchheim, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Healthcare Sector, Siemens AG, Forchheim, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "John", 
        "givenName": "Matthias", 
        "id": "sg:person.01057125010.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057125010.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Rui", 
        "id": "sg:person.01347706366.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347706366.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Healthcare Sector, Siemens AG, Forchheim, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Healthcare Sector, Siemens AG, Forchheim, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boese", 
        "givenName": "Jan", 
        "id": "sg:person.01241466610.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241466610.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Healthcare Sector, Siemens AG, Forchheim, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Healthcare Sector, Siemens AG, Forchheim, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirschstein", 
        "givenName": "Uwe", 
        "id": "sg:person.01266060053.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266060053.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "S. Kevin", 
        "id": "sg:person.01372425362.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiac Surgery, Heart Center, University of Leipzig, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9647.c", 
          "name": [
            "Department of Cardiac Surgery, Heart Center, University of Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kempfert", 
        "givenName": "J\u00f6rg", 
        "id": "sg:person.01234403301.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234403301.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiac Surgery, Kerckoff Heart Center, Bad Nauheim, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Cardiac Surgery, Kerckoff Heart Center, Bad Nauheim, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walther", 
        "givenName": "Thomas", 
        "id": "sg:person.01055702601.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055702601.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Surgery, German Heart Center, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.472754.7", 
          "name": [
            "Department of Cardiovascular Surgery, German Heart Center, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brockmann", 
        "givenName": "Gernot", 
        "id": "sg:person.0721665277.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721665277.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "C-arm CT is an emerging imaging technique in transcatheter aortic valve implantation (TAVI) surgery. Automatic aorta segmentation and valve landmark detection in a C-arm CT volume has important applications in TAVI by providing valuable 3D measurements for surgery planning. Overlaying 3D segmentation onto 2D real time fluoroscopic images also provides critical visual guidance during the surgery. In this paper, we present a part-based aorta segmentation approach, which can handle aorta structure variation in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three aortic hinge points, three commissure points, and two coronary ostia) are also detected automatically in our system. Under the guidance of the detected landmarks, the physicians can deploy the prosthetic valve properly. Our approach is robust under variations of contrast agent. Taking about 1.4 seconds to process one volume, it is also computationally efficient.", 
    "editor": [
      {
        "familyName": "Jiang", 
        "givenName": "Tianzi", 
        "type": "Person"
      }, 
      {
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "type": "Person"
      }, 
      {
        "familyName": "Pluim", 
        "givenName": "Josien P. W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Viergever", 
        "givenName": "Max A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15705-9_58", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15704-2", 
        "978-3-642-15705-9"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2010", 
      "type": "Book"
    }, 
    "keywords": [
      "Automatic aorta segmentation", 
      "landmark detection", 
      "aorta segmentation", 
      "rich domain knowledge", 
      "arm CT volumes", 
      "domain knowledge", 
      "segmentation approach", 
      "discriminative learning", 
      "surgery planning", 
      "CT volumes", 
      "segmentation", 
      "arm CT", 
      "important applications", 
      "fluoroscopic images", 
      "visual guidance", 
      "landmarks", 
      "datasets", 
      "applications", 
      "detection", 
      "images", 
      "learning", 
      "aortic arch", 
      "planning", 
      "aortic valve implantation", 
      "system", 
      "technique", 
      "guidance", 
      "valve implantation", 
      "prosthetic valves", 
      "aortic root", 
      "implantation surgery", 
      "knowledge", 
      "seconds", 
      "model", 
      "part", 
      "detector", 
      "surgery", 
      "aorta", 
      "CT", 
      "aorta model", 
      "contrast agents", 
      "arch", 
      "volume", 
      "TAVI", 
      "physicians", 
      "implantation", 
      "agents", 
      "valve", 
      "cases", 
      "variation", 
      "structure variation", 
      "measurements", 
      "approach", 
      "roots", 
      "paper", 
      "transcatheter aortic valve implantation (TAVI) surgery", 
      "aortic valve implantation (TAVI) surgery", 
      "valve implantation (TAVI) surgery", 
      "valuable 3D measurements", 
      "real time fluoroscopic images", 
      "time fluoroscopic images", 
      "critical visual guidance", 
      "part-based aorta segmentation approach", 
      "aorta segmentation approach", 
      "aorta structure variation", 
      "whole aorta model", 
      "expert-annotated dataset", 
      "important aortic valve landmarks", 
      "aortic valve landmarks", 
      "valve landmarks", 
      "Valve Landmark Detection"
    ], 
    "name": "Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT: Application to Aortic Valve Implantation", 
    "pagination": "476-483", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034443511"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15705-9_58"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20879265"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15705-9_58", 
      "https://app.dimensions.ai/details/publication/pub.1034443511"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_262.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15705-9_58"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_58'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_58'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_58'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_58'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      23 PREDICATES      109 URIs      102 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15705-9_58 schema:about N26d782f8ae154ee5833bf621074bef5d
2 N3e684791fb0342659e4308ddbe26adb3
3 N5c2bce73d8b84f169e5fba11686f5e53
4 N5f9cd1f22328438f8e0116de2f4eeedf
5 N887861ddd1454a35865259665afac201
6 N921ac8b473fb4dd2907532fa1e03cd36
7 N95758a4a525743198961e013ea6441bf
8 Nb236de84a86d457f92ec506eefd3ea5a
9 Ndab9c3968ed34702ab315ec984a0f615
10 Ne0758133e52649ce96573ec3091b1a73
11 Ne86f02ba7e324371b1444e4c44af4eb3
12 anzsrc-for:08
13 anzsrc-for:0801
14 schema:author N96fc0289379d4fccbd0e93cc52b7112a
15 schema:datePublished 2010
16 schema:datePublishedReg 2010-01-01
17 schema:description C-arm CT is an emerging imaging technique in transcatheter aortic valve implantation (TAVI) surgery. Automatic aorta segmentation and valve landmark detection in a C-arm CT volume has important applications in TAVI by providing valuable 3D measurements for surgery planning. Overlaying 3D segmentation onto 2D real time fluoroscopic images also provides critical visual guidance during the surgery. In this paper, we present a part-based aorta segmentation approach, which can handle aorta structure variation in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three aortic hinge points, three commissure points, and two coronary ostia) are also detected automatically in our system. Under the guidance of the detected landmarks, the physicians can deploy the prosthetic valve properly. Our approach is robust under variations of contrast agent. Taking about 1.4 seconds to process one volume, it is also computationally efficient.
18 schema:editor N312314c6698747e09c2f56902e56e631
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N1cb3ca915e5f4db7b7fd030632f94fd7
23 schema:keywords Automatic aorta segmentation
24 CT
25 CT volumes
26 TAVI
27 Valve Landmark Detection
28 agents
29 aorta
30 aorta model
31 aorta segmentation
32 aorta segmentation approach
33 aorta structure variation
34 aortic arch
35 aortic root
36 aortic valve implantation
37 aortic valve implantation (TAVI) surgery
38 aortic valve landmarks
39 applications
40 approach
41 arch
42 arm CT
43 arm CT volumes
44 cases
45 contrast agents
46 critical visual guidance
47 datasets
48 detection
49 detector
50 discriminative learning
51 domain knowledge
52 expert-annotated dataset
53 fluoroscopic images
54 guidance
55 images
56 implantation
57 implantation surgery
58 important aortic valve landmarks
59 important applications
60 knowledge
61 landmark detection
62 landmarks
63 learning
64 measurements
65 model
66 paper
67 part
68 part-based aorta segmentation approach
69 physicians
70 planning
71 prosthetic valves
72 real time fluoroscopic images
73 rich domain knowledge
74 roots
75 seconds
76 segmentation
77 segmentation approach
78 structure variation
79 surgery
80 surgery planning
81 system
82 technique
83 time fluoroscopic images
84 transcatheter aortic valve implantation (TAVI) surgery
85 valuable 3D measurements
86 valve
87 valve implantation
88 valve implantation (TAVI) surgery
89 valve landmarks
90 variation
91 visual guidance
92 volume
93 whole aorta model
94 schema:name Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT: Application to Aortic Valve Implantation
95 schema:pagination 476-483
96 schema:productId N450eff90116f4317981b17192d7a4519
97 Nc04eaab54f7d4b06b083e9df9f7a9d23
98 Nd666b12596c34389b08365dc745547c0
99 schema:publisher Nae2b8997423f434ca5fc8dd6a6a25b24
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034443511
101 https://doi.org/10.1007/978-3-642-15705-9_58
102 schema:sdDatePublished 2022-01-01T19:15
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N7c0a07b7b4ba4febbfdf278c55fe8f1c
105 schema:url https://doi.org/10.1007/978-3-642-15705-9_58
106 sgo:license sg:explorer/license/
107 sgo:sdDataset chapters
108 rdf:type schema:Chapter
109 N058bacd7fc2f41308e8007947925d705 rdf:first sg:person.01347706366.97
110 rdf:rest Nfde2be79625b4c2ea6be20ddf5a49772
111 N08d8de73a7c54c6f92cdb7c9e057f43a rdf:first sg:person.01057125010.36
112 rdf:rest N058bacd7fc2f41308e8007947925d705
113 N16c08c564bdd47ce8031da3af178bfa4 schema:familyName Navab
114 schema:givenName Nassir
115 rdf:type schema:Person
116 N1cb3ca915e5f4db7b7fd030632f94fd7 schema:isbn 978-3-642-15704-2
117 978-3-642-15705-9
118 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010
119 rdf:type schema:Book
120 N218112d6b672424bb542dbb5aee596c2 rdf:first sg:person.01234403301.38
121 rdf:rest N9234622c588a491cba3b32ae52507902
122 N26d782f8ae154ee5833bf621074bef5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Surgery, Computer-Assisted
124 rdf:type schema:DefinedTerm
125 N310b9c0f28c84ee3bc7b9272f4f4987d schema:familyName Viergever
126 schema:givenName Max A.
127 rdf:type schema:Person
128 N312314c6698747e09c2f56902e56e631 rdf:first Ncbf1b0e3141a4cd2a4927be44db60cc9
129 rdf:rest Na013e75142624153a669eeb6e8da87fa
130 N3e684791fb0342659e4308ddbe26adb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Pattern Recognition, Automated
132 rdf:type schema:DefinedTerm
133 N450eff90116f4317981b17192d7a4519 schema:name doi
134 schema:value 10.1007/978-3-642-15705-9_58
135 rdf:type schema:PropertyValue
136 N46cbd490bb284fe5ae8f8ea3b30e8568 schema:familyName Pluim
137 schema:givenName Josien P. W.
138 rdf:type schema:Person
139 N48517d15887f478caea0ab94883b8214 rdf:first sg:person.01266060053.20
140 rdf:rest Ne4bc7344b8db401ba8480749a9166595
141 N5c2bce73d8b84f169e5fba11686f5e53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Humans
143 rdf:type schema:DefinedTerm
144 N5f9cd1f22328438f8e0116de2f4eeedf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Heart Valve Prosthesis Implantation
146 rdf:type schema:DefinedTerm
147 N7c0a07b7b4ba4febbfdf278c55fe8f1c schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 N7f4c181b41c74e64889c07241916bf89 rdf:first N46cbd490bb284fe5ae8f8ea3b30e8568
150 rdf:rest Nb3aa9c66f83e4e118c2da4053c46bf03
151 N887861ddd1454a35865259665afac201 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Tomography, X-Ray Computed
153 rdf:type schema:DefinedTerm
154 N921ac8b473fb4dd2907532fa1e03cd36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Reproducibility of Results
156 rdf:type schema:DefinedTerm
157 N9234622c588a491cba3b32ae52507902 rdf:first sg:person.01055702601.26
158 rdf:rest Nf45c10d4e511493e9e47338d80a938f6
159 N95758a4a525743198961e013ea6441bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Heart Valve Diseases
161 rdf:type schema:DefinedTerm
162 N96fc0289379d4fccbd0e93cc52b7112a rdf:first sg:person.0767211426.21
163 rdf:rest N08d8de73a7c54c6f92cdb7c9e057f43a
164 Na013e75142624153a669eeb6e8da87fa rdf:first N16c08c564bdd47ce8031da3af178bfa4
165 rdf:rest N7f4c181b41c74e64889c07241916bf89
166 Nae2b8997423f434ca5fc8dd6a6a25b24 schema:name Springer Nature
167 rdf:type schema:Organisation
168 Nb236de84a86d457f92ec506eefd3ea5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Sensitivity and Specificity
170 rdf:type schema:DefinedTerm
171 Nb3aa9c66f83e4e118c2da4053c46bf03 rdf:first N310b9c0f28c84ee3bc7b9272f4f4987d
172 rdf:rest rdf:nil
173 Nc04eaab54f7d4b06b083e9df9f7a9d23 schema:name pubmed_id
174 schema:value 20879265
175 rdf:type schema:PropertyValue
176 Nc1228837c03d46fe86a7e1132dadbe05 rdf:first sg:person.01066111014.77
177 rdf:rest rdf:nil
178 Ncbf1b0e3141a4cd2a4927be44db60cc9 schema:familyName Jiang
179 schema:givenName Tianzi
180 rdf:type schema:Person
181 Nd666b12596c34389b08365dc745547c0 schema:name dimensions_id
182 schema:value pub.1034443511
183 rdf:type schema:PropertyValue
184 Ndab9c3968ed34702ab315ec984a0f615 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Radiographic Image Interpretation, Computer-Assisted
186 rdf:type schema:DefinedTerm
187 Ne0758133e52649ce96573ec3091b1a73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Aorta
189 rdf:type schema:DefinedTerm
190 Ne4bc7344b8db401ba8480749a9166595 rdf:first sg:person.0703547214.37
191 rdf:rest Nedc73ad370164d298aba97da6f1bd99e
192 Ne86f02ba7e324371b1444e4c44af4eb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Aortography
194 rdf:type schema:DefinedTerm
195 Nedc73ad370164d298aba97da6f1bd99e rdf:first sg:person.01372425362.30
196 rdf:rest N218112d6b672424bb542dbb5aee596c2
197 Nf45c10d4e511493e9e47338d80a938f6 rdf:first sg:person.0721665277.51
198 rdf:rest Nc1228837c03d46fe86a7e1132dadbe05
199 Nfde2be79625b4c2ea6be20ddf5a49772 rdf:first sg:person.01241466610.88
200 rdf:rest N48517d15887f478caea0ab94883b8214
201 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
202 schema:name Information and Computing Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
205 schema:name Artificial Intelligence and Image Processing
206 rdf:type schema:DefinedTerm
207 sg:person.01055702601.26 schema:affiliation grid-institutes:None
208 schema:familyName Walther
209 schema:givenName Thomas
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055702601.26
211 rdf:type schema:Person
212 sg:person.01057125010.36 schema:affiliation grid-institutes:grid.5406.7
213 schema:familyName John
214 schema:givenName Matthias
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057125010.36
216 rdf:type schema:Person
217 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
218 schema:familyName Comaniciu
219 schema:givenName Dorin
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
221 rdf:type schema:Person
222 sg:person.01234403301.38 schema:affiliation grid-institutes:grid.9647.c
223 schema:familyName Kempfert
224 schema:givenName Jörg
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234403301.38
226 rdf:type schema:Person
227 sg:person.01241466610.88 schema:affiliation grid-institutes:grid.5406.7
228 schema:familyName Boese
229 schema:givenName Jan
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241466610.88
231 rdf:type schema:Person
232 sg:person.01266060053.20 schema:affiliation grid-institutes:grid.5406.7
233 schema:familyName Kirschstein
234 schema:givenName Uwe
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266060053.20
236 rdf:type schema:Person
237 sg:person.01347706366.97 schema:affiliation grid-institutes:grid.419233.e
238 schema:familyName Liao
239 schema:givenName Rui
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347706366.97
241 rdf:type schema:Person
242 sg:person.01372425362.30 schema:affiliation grid-institutes:grid.419233.e
243 schema:familyName Zhou
244 schema:givenName S. Kevin
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30
246 rdf:type schema:Person
247 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
248 schema:familyName Georgescu
249 schema:givenName Bogdan
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
251 rdf:type schema:Person
252 sg:person.0721665277.51 schema:affiliation grid-institutes:grid.472754.7
253 schema:familyName Brockmann
254 schema:givenName Gernot
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721665277.51
256 rdf:type schema:Person
257 sg:person.0767211426.21 schema:affiliation grid-institutes:grid.419233.e
258 schema:familyName Zheng
259 schema:givenName Yefeng
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767211426.21
261 rdf:type schema:Person
262 grid-institutes:None schema:alternateName Department of Cardiac Surgery, Kerckoff Heart Center, Bad Nauheim, Germany
263 schema:name Department of Cardiac Surgery, Kerckoff Heart Center, Bad Nauheim, Germany
264 rdf:type schema:Organization
265 grid-institutes:grid.419233.e schema:alternateName Siemens Corporate Research, Princeton, USA
266 schema:name Siemens Corporate Research, Princeton, USA
267 rdf:type schema:Organization
268 grid-institutes:grid.472754.7 schema:alternateName Department of Cardiovascular Surgery, German Heart Center, Munich, Germany
269 schema:name Department of Cardiovascular Surgery, German Heart Center, Munich, Germany
270 rdf:type schema:Organization
271 grid-institutes:grid.5406.7 schema:alternateName Healthcare Sector, Siemens AG, Forchheim, Germany
272 schema:name Healthcare Sector, Siemens AG, Forchheim, Germany
273 rdf:type schema:Organization
274 grid-institutes:grid.9647.c schema:alternateName Department of Cardiac Surgery, Heart Center, University of Leipzig, Germany
275 schema:name Department of Cardiac Surgery, Heart Center, University of Leipzig, Germany
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...