Cross-Modality Assessment and Planning for Pulmonary Trunk Treatment Using CT and MRI Imaging View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Dime Vitanovski , Alexey Tsymbal , Razvan Ioan Ionasec , Bogdan Georgescu , Martin Huber , Andrew Taylor , Silvia Schievano , Shaohua Kevin Zhou , Joachim Hornegger , Dorin Comaniciu

ABSTRACT

Congenital heart defect is the primary cause of death in newborns, due to typically complex malformation of the cardiac system. The pulmonary valve and trunk are often affected and require complex clinical management and in most cases surgical or interventional treatment. While minimal invasive methods are emerging, non-invasive imaging-based assessment tools become crucial components in the clinical setting. For advanced evaluation and therapy planning purposes, cardiac Computed Tomography (CT) and cardiac Magnetic Resonance Imaging (cMRI) are important non-invasive investigation techniques with complementary properties. Although, characterized by high temporal resolution, cMRI does not cover the full motion of the pulmonary trunk. The sparse cMRI data acquired in this context include only one 3D scan of the heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. In this paper we present a cross-modality framework for the evaluation of the pulmonary trunk, which combines the advantages of both, cardiac CT and cMRI. A patient-specific model is estimated from both modalities using hierarchical learning-based techniques. The pulmonary trunk model is exploited within a novel dynamic regression-based reconstruction to infer the incomplete cMRI temporal information. Extensive experiments performed on 72 cardiac CT and 74 cMRI sequences demonstrated the average speed of 110 seconds and accuracy of 1.4mm for the proposed approach. To the best of our knowledge this is the first dynamic model of the pulmonary trunk and right ventricle outflow track estimated from sparse 4D cMRI data. More... »

PAGES

460-467

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_56

DOI

http://dx.doi.org/10.1007/978-3-642-15705-9_56

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003071427

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20879263


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Defects, Congenital", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
            "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitanovski", 
        "givenName": "Dime", 
        "id": "sg:person.01242456111.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsymbal", 
        "givenName": "Alexey", 
        "id": "sg:person.015310157176.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310157176.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionasec", 
        "givenName": "Razvan Ioan", 
        "id": "sg:person.01010560470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huber", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Great Ormond Street Hospital for Children, London, England", 
          "id": "http://www.grid.ac/institutes/grid.420468.c", 
          "name": [
            "Great Ormond Street Hospital for Children, London, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Andrew", 
        "id": "sg:person.01120223741.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120223741.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Great Ormond Street Hospital for Children, London, England", 
          "id": "http://www.grid.ac/institutes/grid.420468.c", 
          "name": [
            "Great Ormond Street Hospital for Children, London, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schievano", 
        "givenName": "Silvia", 
        "id": "sg:person.01116702706.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116702706.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Shaohua Kevin", 
        "id": "sg:person.01372425362.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "id": "sg:person.01322323610.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Congenital heart defect is the primary cause of death in newborns, due to typically complex malformation of the cardiac system. The pulmonary valve and trunk are often affected and require complex clinical management and in most cases surgical or interventional treatment. While minimal invasive methods are emerging, non-invasive imaging-based assessment tools become crucial components in the clinical setting. For advanced evaluation and therapy planning purposes, cardiac Computed Tomography (CT) and cardiac Magnetic Resonance Imaging (cMRI) are important non-invasive investigation techniques with complementary properties. Although, characterized by high temporal resolution, cMRI does not cover the full motion of the pulmonary trunk. The sparse cMRI data acquired in this context include only one 3D scan of the heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. In this paper we present a cross-modality framework for the evaluation of the pulmonary trunk, which combines the advantages of both, cardiac CT and cMRI. A patient-specific model is estimated from both modalities using hierarchical learning-based techniques. The pulmonary trunk model is exploited within a novel dynamic regression-based reconstruction to infer the incomplete cMRI temporal information. Extensive experiments performed on 72 cardiac CT and 74 cMRI sequences demonstrated the average speed of 110 seconds and accuracy of 1.4mm for the proposed approach. To the best of our knowledge this is the first dynamic model of the pulmonary trunk and right ventricle outflow track estimated from sparse 4D cMRI data.", 
    "editor": [
      {
        "familyName": "Jiang", 
        "givenName": "Tianzi", 
        "type": "Person"
      }, 
      {
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "type": "Person"
      }, 
      {
        "familyName": "Pluim", 
        "givenName": "Josien P. W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Viergever", 
        "givenName": "Max A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15705-9_56", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15704-2", 
        "978-3-642-15705-9"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2010", 
      "type": "Book"
    }, 
    "keywords": [
      "cardiac magnetic resonance imaging", 
      "cardiac computed tomography", 
      "learning-based techniques", 
      "cardiac CT", 
      "CMRI data", 
      "pulmonary trunk", 
      "non-invasive investigation technique", 
      "Extensive experiments", 
      "temporal information", 
      "first dynamic model", 
      "patient-specific models", 
      "congenital heart defects", 
      "complex clinical management", 
      "minimal invasive method", 
      "magnetic resonance imaging", 
      "complementary properties", 
      "pulmonary valve", 
      "interventional treatment", 
      "clinical management", 
      "complex malformations", 
      "outflow track", 
      "end-diastolic phase", 
      "computed tomography", 
      "heart defects", 
      "resonance imaging", 
      "MRI imaging", 
      "invasive method", 
      "Modality Assessment", 
      "regression-based reconstruction", 
      "clinical setting", 
      "planning purposes", 
      "trunk", 
      "whole cardiac cycle", 
      "cardiac cycle", 
      "cardiac system", 
      "primary cause", 
      "assessment tool", 
      "full motion", 
      "advanced evaluation", 
      "crucial component", 
      "treatment", 
      "average speed", 
      "high temporal resolution", 
      "dynamic model", 
      "most cases", 
      "imaging", 
      "technique", 
      "framework", 
      "accuracy", 
      "newborns", 
      "model", 
      "information", 
      "trunk model", 
      "malformations", 
      "planning", 
      "tool", 
      "death", 
      "tomography", 
      "temporal resolution", 
      "data", 
      "scans", 
      "modalities", 
      "heart", 
      "evaluation", 
      "cause", 
      "system", 
      "advantages", 
      "speed", 
      "track", 
      "seconds", 
      "reconstruction", 
      "valve", 
      "context", 
      "knowledge", 
      "setting", 
      "assessment", 
      "management", 
      "investigation techniques", 
      "method", 
      "experiments", 
      "cases", 
      "defects", 
      "motion", 
      "sequence", 
      "purpose", 
      "components", 
      "resolution", 
      "cycle", 
      "plane", 
      "approach", 
      "phase", 
      "properties", 
      "paper", 
      "non-invasive imaging-based assessment tools", 
      "imaging-based assessment tools", 
      "therapy planning purposes", 
      "important non-invasive investigation techniques", 
      "sparse cMRI data", 
      "cross-modality framework", 
      "hierarchical learning-based techniques", 
      "pulmonary trunk model", 
      "novel dynamic regression-based reconstruction", 
      "dynamic regression-based reconstruction", 
      "incomplete cMRI temporal information", 
      "cMRI temporal information", 
      "cMRI sequences", 
      "right ventricle outflow track", 
      "ventricle outflow track", 
      "sparse 4D cMRI data", 
      "Pulmonary Trunk Treatment", 
      "Trunk Treatment"
    ], 
    "name": "Cross-Modality Assessment and Planning for Pulmonary Trunk Treatment Using CT and MRI Imaging", 
    "pagination": "460-467", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003071427"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15705-9_56"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20879263"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15705-9_56", 
      "https://app.dimensions.ai/details/publication/pub.1003071427"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_73.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15705-9_56"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_56'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_56'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_56'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_56'


 

This table displays all metadata directly associated to this object as RDF triples.

315 TRIPLES      23 PREDICATES      152 URIs      143 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15705-9_56 schema:about N0fe532243cd14275a960812094de99cd
2 N55da826641d9488683abcf4ccb82f510
3 N8d541fb6bd4040129121af8def34a607
4 N8dec6cc0cff043d1a88dfca3de84f37a
5 N97085654c2c6437eb2123d4335f3ac2d
6 N9a813e0e7669459caaa4c363ca2c5841
7 N9ba91f8fbff34a588bb81a4ee2f88fee
8 Na2ed93546e384104b25cac399e7ca013
9 Naa5bc308d06f479383bb6e1360d06795
10 Naa88723cad664ecd946301761a6e7616
11 Nbf564a561fe24df0925d96ca2833d1ac
12 Nc49e4e0c565b4771844eeeb784429ee1
13 anzsrc-for:08
14 anzsrc-for:0801
15 anzsrc-for:11
16 anzsrc-for:1102
17 schema:author N1f1ee5bd73004e96acd9f62a905c60c0
18 schema:datePublished 2010
19 schema:datePublishedReg 2010-01-01
20 schema:description Congenital heart defect is the primary cause of death in newborns, due to typically complex malformation of the cardiac system. The pulmonary valve and trunk are often affected and require complex clinical management and in most cases surgical or interventional treatment. While minimal invasive methods are emerging, non-invasive imaging-based assessment tools become crucial components in the clinical setting. For advanced evaluation and therapy planning purposes, cardiac Computed Tomography (CT) and cardiac Magnetic Resonance Imaging (cMRI) are important non-invasive investigation techniques with complementary properties. Although, characterized by high temporal resolution, cMRI does not cover the full motion of the pulmonary trunk. The sparse cMRI data acquired in this context include only one 3D scan of the heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. In this paper we present a cross-modality framework for the evaluation of the pulmonary trunk, which combines the advantages of both, cardiac CT and cMRI. A patient-specific model is estimated from both modalities using hierarchical learning-based techniques. The pulmonary trunk model is exploited within a novel dynamic regression-based reconstruction to infer the incomplete cMRI temporal information. Extensive experiments performed on 72 cardiac CT and 74 cMRI sequences demonstrated the average speed of 110 seconds and accuracy of 1.4mm for the proposed approach. To the best of our knowledge this is the first dynamic model of the pulmonary trunk and right ventricle outflow track estimated from sparse 4D cMRI data.
21 schema:editor N74ed5a0f54ba435d8e3bdac83b9564ee
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N66e3c745144742be97050044de4d9792
26 schema:keywords CMRI data
27 Extensive experiments
28 MRI imaging
29 Modality Assessment
30 Pulmonary Trunk Treatment
31 Trunk Treatment
32 accuracy
33 advanced evaluation
34 advantages
35 approach
36 assessment
37 assessment tool
38 average speed
39 cMRI sequences
40 cMRI temporal information
41 cardiac CT
42 cardiac computed tomography
43 cardiac cycle
44 cardiac magnetic resonance imaging
45 cardiac system
46 cases
47 cause
48 clinical management
49 clinical setting
50 complementary properties
51 complex clinical management
52 complex malformations
53 components
54 computed tomography
55 congenital heart defects
56 context
57 cross-modality framework
58 crucial component
59 cycle
60 data
61 death
62 defects
63 dynamic model
64 dynamic regression-based reconstruction
65 end-diastolic phase
66 evaluation
67 experiments
68 first dynamic model
69 framework
70 full motion
71 heart
72 heart defects
73 hierarchical learning-based techniques
74 high temporal resolution
75 imaging
76 imaging-based assessment tools
77 important non-invasive investigation techniques
78 incomplete cMRI temporal information
79 information
80 interventional treatment
81 invasive method
82 investigation techniques
83 knowledge
84 learning-based techniques
85 magnetic resonance imaging
86 malformations
87 management
88 method
89 minimal invasive method
90 modalities
91 model
92 most cases
93 motion
94 newborns
95 non-invasive imaging-based assessment tools
96 non-invasive investigation technique
97 novel dynamic regression-based reconstruction
98 outflow track
99 paper
100 patient-specific models
101 phase
102 plane
103 planning
104 planning purposes
105 primary cause
106 properties
107 pulmonary trunk
108 pulmonary trunk model
109 pulmonary valve
110 purpose
111 reconstruction
112 regression-based reconstruction
113 resolution
114 resonance imaging
115 right ventricle outflow track
116 scans
117 seconds
118 sequence
119 setting
120 sparse 4D cMRI data
121 sparse cMRI data
122 speed
123 system
124 technique
125 temporal information
126 temporal resolution
127 therapy planning purposes
128 tomography
129 tool
130 track
131 treatment
132 trunk
133 trunk model
134 valve
135 ventricle outflow track
136 whole cardiac cycle
137 schema:name Cross-Modality Assessment and Planning for Pulmonary Trunk Treatment Using CT and MRI Imaging
138 schema:pagination 460-467
139 schema:productId N6e01cf5af56e47b0a04da06b38e09ada
140 Naf5a5fe60673497399115ddac28cf7e5
141 Nf7e44fe831eb49e89834f162eb45a361
142 schema:publisher Nc487b8c95e53451198d9a6c8ac8fa565
143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003071427
144 https://doi.org/10.1007/978-3-642-15705-9_56
145 schema:sdDatePublished 2022-01-01T19:27
146 schema:sdLicense https://scigraph.springernature.com/explorer/license/
147 schema:sdPublisher N0c8b43a6191c45859b090553e62af369
148 schema:url https://doi.org/10.1007/978-3-642-15705-9_56
149 sgo:license sg:explorer/license/
150 sgo:sdDataset chapters
151 rdf:type schema:Chapter
152 N0c8b43a6191c45859b090553e62af369 schema:name Springer Nature - SN SciGraph project
153 rdf:type schema:Organization
154 N0fe532243cd14275a960812094de99cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Pattern Recognition, Automated
156 rdf:type schema:DefinedTerm
157 N11b39b66764a41fb95aadba60aae29a9 rdf:first sg:person.0703547214.37
158 rdf:rest Ncad14b4e019d40c9946389a82d5a1359
159 N16ef57cdfb404a94a872ec1a16c65d8c rdf:first N9df04d3a90e04c729540552cfda77b09
160 rdf:rest Nb3c0c76e6afb433ebbdd9286e0dee99c
161 N17018a3d4cb84e969f43850e8092ca81 rdf:first N8fada96eec224781a8c4e6840cd277ac
162 rdf:rest rdf:nil
163 N1f1ee5bd73004e96acd9f62a905c60c0 rdf:first sg:person.01242456111.33
164 rdf:rest N57aa57741fd14e08b787fc09ceb013bc
165 N282c7e613bf24f5c9de7c4eb232639a7 rdf:first sg:person.01372425362.30
166 rdf:rest N7f0dd7ebdc2640168180fd9160a14d46
167 N4fd2f5af7d0a43009939f25577455071 schema:familyName Jiang
168 schema:givenName Tianzi
169 rdf:type schema:Person
170 N55da826641d9488683abcf4ccb82f510 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Reproducibility of Results
172 rdf:type schema:DefinedTerm
173 N57aa57741fd14e08b787fc09ceb013bc rdf:first sg:person.015310157176.53
174 rdf:rest N7d8b7b562c524bfdb304b3243aec19c3
175 N66e3c745144742be97050044de4d9792 schema:isbn 978-3-642-15704-2
176 978-3-642-15705-9
177 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010
178 rdf:type schema:Book
179 N6e01cf5af56e47b0a04da06b38e09ada schema:name pubmed_id
180 schema:value 20879263
181 rdf:type schema:PropertyValue
182 N74bc23844a314c75abbe313e3e2db943 schema:affiliation grid-institutes:grid.419233.e
183 schema:familyName Huber
184 schema:givenName Martin
185 rdf:type schema:Person
186 N74ed5a0f54ba435d8e3bdac83b9564ee rdf:first N4fd2f5af7d0a43009939f25577455071
187 rdf:rest N16ef57cdfb404a94a872ec1a16c65d8c
188 N7d8b7b562c524bfdb304b3243aec19c3 rdf:first sg:person.01010560470.38
189 rdf:rest N11b39b66764a41fb95aadba60aae29a9
190 N7f0dd7ebdc2640168180fd9160a14d46 rdf:first sg:person.01322323610.92
191 rdf:rest Nc27cae4bef8c41fabd7cfd0350985708
192 N8d541fb6bd4040129121af8def34a607 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Subtraction Technique
194 rdf:type schema:DefinedTerm
195 N8dec6cc0cff043d1a88dfca3de84f37a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Humans
197 rdf:type schema:DefinedTerm
198 N8f2422bbd10946e3a23044109c6338e0 schema:familyName Pluim
199 schema:givenName Josien P. W.
200 rdf:type schema:Person
201 N8fada96eec224781a8c4e6840cd277ac schema:familyName Viergever
202 schema:givenName Max A.
203 rdf:type schema:Person
204 N9423601e1bf74505af94ef8d4b885762 rdf:first sg:person.01120223741.15
205 rdf:rest Nd914deb7eb3c409f81850d752da7b802
206 N97085654c2c6437eb2123d4335f3ac2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Sensitivity and Specificity
208 rdf:type schema:DefinedTerm
209 N9a813e0e7669459caaa4c363ca2c5841 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Image Enhancement
211 rdf:type schema:DefinedTerm
212 N9ba91f8fbff34a588bb81a4ee2f88fee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Heart Defects, Congenital
214 rdf:type schema:DefinedTerm
215 N9df04d3a90e04c729540552cfda77b09 schema:familyName Navab
216 schema:givenName Nassir
217 rdf:type schema:Person
218 Na2ed93546e384104b25cac399e7ca013 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
219 schema:name Image Interpretation, Computer-Assisted
220 rdf:type schema:DefinedTerm
221 Naa5bc308d06f479383bb6e1360d06795 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
222 schema:name Algorithms
223 rdf:type schema:DefinedTerm
224 Naa88723cad664ecd946301761a6e7616 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
225 schema:name Pulmonary Artery
226 rdf:type schema:DefinedTerm
227 Naf5a5fe60673497399115ddac28cf7e5 schema:name doi
228 schema:value 10.1007/978-3-642-15705-9_56
229 rdf:type schema:PropertyValue
230 Nb3c0c76e6afb433ebbdd9286e0dee99c rdf:first N8f2422bbd10946e3a23044109c6338e0
231 rdf:rest N17018a3d4cb84e969f43850e8092ca81
232 Nbf564a561fe24df0925d96ca2833d1ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
233 schema:name Magnetic Resonance Imaging
234 rdf:type schema:DefinedTerm
235 Nc27cae4bef8c41fabd7cfd0350985708 rdf:first sg:person.01066111014.77
236 rdf:rest rdf:nil
237 Nc487b8c95e53451198d9a6c8ac8fa565 schema:name Springer Nature
238 rdf:type schema:Organisation
239 Nc49e4e0c565b4771844eeeb784429ee1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
240 schema:name Tomography, X-Ray Computed
241 rdf:type schema:DefinedTerm
242 Ncad14b4e019d40c9946389a82d5a1359 rdf:first N74bc23844a314c75abbe313e3e2db943
243 rdf:rest N9423601e1bf74505af94ef8d4b885762
244 Nd914deb7eb3c409f81850d752da7b802 rdf:first sg:person.01116702706.22
245 rdf:rest N282c7e613bf24f5c9de7c4eb232639a7
246 Nf7e44fe831eb49e89834f162eb45a361 schema:name dimensions_id
247 schema:value pub.1003071427
248 rdf:type schema:PropertyValue
249 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
250 schema:name Information and Computing Sciences
251 rdf:type schema:DefinedTerm
252 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
253 schema:name Artificial Intelligence and Image Processing
254 rdf:type schema:DefinedTerm
255 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
256 schema:name Medical and Health Sciences
257 rdf:type schema:DefinedTerm
258 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
259 schema:name Cardiorespiratory Medicine and Haematology
260 rdf:type schema:DefinedTerm
261 sg:person.01010560470.38 schema:affiliation grid-institutes:grid.419233.e
262 schema:familyName Ionasec
263 schema:givenName Razvan Ioan
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38
265 rdf:type schema:Person
266 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
267 schema:familyName Comaniciu
268 schema:givenName Dorin
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
270 rdf:type schema:Person
271 sg:person.01116702706.22 schema:affiliation grid-institutes:grid.420468.c
272 schema:familyName Schievano
273 schema:givenName Silvia
274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116702706.22
275 rdf:type schema:Person
276 sg:person.01120223741.15 schema:affiliation grid-institutes:grid.420468.c
277 schema:familyName Taylor
278 schema:givenName Andrew
279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120223741.15
280 rdf:type schema:Person
281 sg:person.01242456111.33 schema:affiliation grid-institutes:grid.5330.5
282 schema:familyName Vitanovski
283 schema:givenName Dime
284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33
285 rdf:type schema:Person
286 sg:person.01322323610.92 schema:affiliation grid-institutes:grid.5330.5
287 schema:familyName Hornegger
288 schema:givenName Joachim
289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92
290 rdf:type schema:Person
291 sg:person.01372425362.30 schema:affiliation grid-institutes:grid.419233.e
292 schema:familyName Zhou
293 schema:givenName Shaohua Kevin
294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30
295 rdf:type schema:Person
296 sg:person.015310157176.53 schema:affiliation grid-institutes:grid.419233.e
297 schema:familyName Tsymbal
298 schema:givenName Alexey
299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310157176.53
300 rdf:type schema:Person
301 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
302 schema:familyName Georgescu
303 schema:givenName Bogdan
304 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
305 rdf:type schema:Person
306 grid-institutes:grid.419233.e schema:alternateName Integrated Data Systems, Siemens Corporate Research, Princeton, USA
307 schema:name Integrated Data Systems, Siemens Corporate Research, Princeton, USA
308 rdf:type schema:Organization
309 grid-institutes:grid.420468.c schema:alternateName Great Ormond Street Hospital for Children, London, England
310 schema:name Great Ormond Street Hospital for Children, London, England
311 rdf:type schema:Organization
312 grid-institutes:grid.5330.5 schema:alternateName Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
313 schema:name Integrated Data Systems, Siemens Corporate Research, Princeton, USA
314 Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
315 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...