Cross-Modality Assessment and Planning for Pulmonary Trunk Treatment Using CT and MRI Imaging View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Dime Vitanovski , Alexey Tsymbal , Razvan Ioan Ionasec , Bogdan Georgescu , Martin Huber , Andrew Taylor , Silvia Schievano , Shaohua Kevin Zhou , Joachim Hornegger , Dorin Comaniciu

ABSTRACT

Congenital heart defect is the primary cause of death in newborns, due to typically complex malformation of the cardiac system. The pulmonary valve and trunk are often affected and require complex clinical management and in most cases surgical or interventional treatment. While minimal invasive methods are emerging, non-invasive imaging-based assessment tools become crucial components in the clinical setting. For advanced evaluation and therapy planning purposes, cardiac Computed Tomography (CT) and cardiac Magnetic Resonance Imaging (cMRI) are important non-invasive investigation techniques with complementary properties. Although, characterized by high temporal resolution, cMRI does not cover the full motion of the pulmonary trunk. The sparse cMRI data acquired in this context include only one 3D scan of the heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. In this paper we present a cross-modality framework for the evaluation of the pulmonary trunk, which combines the advantages of both, cardiac CT and cMRI. A patient-specific model is estimated from both modalities using hierarchical learning-based techniques. The pulmonary trunk model is exploited within a novel dynamic regression-based reconstruction to infer the incomplete cMRI temporal information. Extensive experiments performed on 72 cardiac CT and 74 cMRI sequences demonstrated the average speed of 110 seconds and accuracy of 1.4mm for the proposed approach. To the best of our knowledge this is the first dynamic model of the pulmonary trunk and right ventricle outflow track estimated from sparse 4D cMRI data. More... »

PAGES

460-467

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_56

DOI

http://dx.doi.org/10.1007/978-3-642-15705-9_56

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003071427

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20879263


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Defects, Congenital", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
            "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitanovski", 
        "givenName": "Dime", 
        "id": "sg:person.01242456111.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsymbal", 
        "givenName": "Alexey", 
        "id": "sg:person.015310157176.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310157176.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionasec", 
        "givenName": "Razvan Ioan", 
        "id": "sg:person.01010560470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huber", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Great Ormond Street Hospital for Children, London, England", 
          "id": "http://www.grid.ac/institutes/grid.420468.c", 
          "name": [
            "Great Ormond Street Hospital for Children, London, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Andrew", 
        "id": "sg:person.01120223741.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120223741.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Great Ormond Street Hospital for Children, London, England", 
          "id": "http://www.grid.ac/institutes/grid.420468.c", 
          "name": [
            "Great Ormond Street Hospital for Children, London, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schievano", 
        "givenName": "Silvia", 
        "id": "sg:person.01116702706.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116702706.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Shaohua Kevin", 
        "id": "sg:person.01372425362.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "id": "sg:person.01322323610.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Congenital heart defect is the primary cause of death in newborns, due to typically complex malformation of the cardiac system. The pulmonary valve and trunk are often affected and require complex clinical management and in most cases surgical or interventional treatment. While minimal invasive methods are emerging, non-invasive imaging-based assessment tools become crucial components in the clinical setting. For advanced evaluation and therapy planning purposes, cardiac Computed Tomography (CT) and cardiac Magnetic Resonance Imaging (cMRI) are important non-invasive investigation techniques with complementary properties. Although, characterized by high temporal resolution, cMRI does not cover the full motion of the pulmonary trunk. The sparse cMRI data acquired in this context include only one 3D scan of the heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. In this paper we present a cross-modality framework for the evaluation of the pulmonary trunk, which combines the advantages of both, cardiac CT and cMRI. A patient-specific model is estimated from both modalities using hierarchical learning-based techniques. The pulmonary trunk model is exploited within a novel dynamic regression-based reconstruction to infer the incomplete cMRI temporal information. Extensive experiments performed on 72 cardiac CT and 74 cMRI sequences demonstrated the average speed of 110 seconds and accuracy of 1.4mm for the proposed approach. To the best of our knowledge this is the first dynamic model of the pulmonary trunk and right ventricle outflow track estimated from sparse 4D cMRI data.", 
    "editor": [
      {
        "familyName": "Jiang", 
        "givenName": "Tianzi", 
        "type": "Person"
      }, 
      {
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "type": "Person"
      }, 
      {
        "familyName": "Pluim", 
        "givenName": "Josien P. W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Viergever", 
        "givenName": "Max A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15705-9_56", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15704-2", 
        "978-3-642-15705-9"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2010", 
      "type": "Book"
    }, 
    "keywords": [
      "cardiac magnetic resonance imaging", 
      "cardiac computed tomography", 
      "learning-based techniques", 
      "cardiac CT", 
      "CMRI data", 
      "pulmonary trunk", 
      "non-invasive investigation technique", 
      "Extensive experiments", 
      "temporal information", 
      "first dynamic model", 
      "patient-specific models", 
      "congenital heart defects", 
      "complex clinical management", 
      "minimal invasive method", 
      "magnetic resonance imaging", 
      "complementary properties", 
      "pulmonary valve", 
      "interventional treatment", 
      "clinical management", 
      "complex malformations", 
      "outflow track", 
      "end-diastolic phase", 
      "computed tomography", 
      "heart defects", 
      "resonance imaging", 
      "MRI imaging", 
      "invasive method", 
      "Modality Assessment", 
      "regression-based reconstruction", 
      "clinical setting", 
      "planning purposes", 
      "trunk", 
      "whole cardiac cycle", 
      "cardiac cycle", 
      "cardiac system", 
      "primary cause", 
      "assessment tool", 
      "full motion", 
      "advanced evaluation", 
      "crucial component", 
      "treatment", 
      "average speed", 
      "high temporal resolution", 
      "dynamic model", 
      "most cases", 
      "imaging", 
      "technique", 
      "framework", 
      "accuracy", 
      "newborns", 
      "model", 
      "information", 
      "trunk model", 
      "malformations", 
      "planning", 
      "tool", 
      "death", 
      "tomography", 
      "temporal resolution", 
      "data", 
      "scans", 
      "modalities", 
      "heart", 
      "evaluation", 
      "cause", 
      "system", 
      "advantages", 
      "speed", 
      "track", 
      "seconds", 
      "reconstruction", 
      "valve", 
      "context", 
      "knowledge", 
      "setting", 
      "assessment", 
      "management", 
      "investigation techniques", 
      "method", 
      "experiments", 
      "cases", 
      "defects", 
      "motion", 
      "sequence", 
      "purpose", 
      "components", 
      "resolution", 
      "cycle", 
      "plane", 
      "approach", 
      "phase", 
      "properties", 
      "paper"
    ], 
    "name": "Cross-Modality Assessment and Planning for Pulmonary Trunk Treatment Using CT and MRI Imaging", 
    "pagination": "460-467", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003071427"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15705-9_56"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20879263"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15705-9_56", 
      "https://app.dimensions.ai/details/publication/pub.1003071427"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_112.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15705-9_56"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_56'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_56'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_56'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_56'


 

This table displays all metadata directly associated to this object as RDF triples.

297 TRIPLES      23 PREDICATES      134 URIs      125 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15705-9_56 schema:about N1226af9281f7464c8b83da37d8db20ce
2 N1b406611b0bb47a6b0f740d32ed53231
3 N21d72eb77a3f4e53b516029f07aaad3a
4 N27fef9571cb942b281b6177c70884ac6
5 N29cf3d30ab0d4de28cc1791f23b12529
6 N3259468dbb1b496aaed36825a61136af
7 N32cc744e18bd48a2b2e69079d2885731
8 N5837aaeae514482c8311c620f30f8cda
9 N5e07390d2fc1412db3ffb068dadebc80
10 N6c0cb46e4d824c58a9e71db67341df44
11 Nb666239f0de54562b8752453154094b0
12 Nc487de6cdb8e49deae5ee24bd4006bff
13 anzsrc-for:08
14 anzsrc-for:0801
15 anzsrc-for:11
16 anzsrc-for:1102
17 schema:author N2e76d3408df345b0882f31b6da61ac5f
18 schema:datePublished 2010
19 schema:datePublishedReg 2010-01-01
20 schema:description Congenital heart defect is the primary cause of death in newborns, due to typically complex malformation of the cardiac system. The pulmonary valve and trunk are often affected and require complex clinical management and in most cases surgical or interventional treatment. While minimal invasive methods are emerging, non-invasive imaging-based assessment tools become crucial components in the clinical setting. For advanced evaluation and therapy planning purposes, cardiac Computed Tomography (CT) and cardiac Magnetic Resonance Imaging (cMRI) are important non-invasive investigation techniques with complementary properties. Although, characterized by high temporal resolution, cMRI does not cover the full motion of the pulmonary trunk. The sparse cMRI data acquired in this context include only one 3D scan of the heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. In this paper we present a cross-modality framework for the evaluation of the pulmonary trunk, which combines the advantages of both, cardiac CT and cMRI. A patient-specific model is estimated from both modalities using hierarchical learning-based techniques. The pulmonary trunk model is exploited within a novel dynamic regression-based reconstruction to infer the incomplete cMRI temporal information. Extensive experiments performed on 72 cardiac CT and 74 cMRI sequences demonstrated the average speed of 110 seconds and accuracy of 1.4mm for the proposed approach. To the best of our knowledge this is the first dynamic model of the pulmonary trunk and right ventricle outflow track estimated from sparse 4D cMRI data.
21 schema:editor N410adb28703642e085cf9b9022c0478d
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N087f3bdfc83b4371b6ddad7a7a89113d
26 schema:keywords CMRI data
27 Extensive experiments
28 MRI imaging
29 Modality Assessment
30 accuracy
31 advanced evaluation
32 advantages
33 approach
34 assessment
35 assessment tool
36 average speed
37 cardiac CT
38 cardiac computed tomography
39 cardiac cycle
40 cardiac magnetic resonance imaging
41 cardiac system
42 cases
43 cause
44 clinical management
45 clinical setting
46 complementary properties
47 complex clinical management
48 complex malformations
49 components
50 computed tomography
51 congenital heart defects
52 context
53 crucial component
54 cycle
55 data
56 death
57 defects
58 dynamic model
59 end-diastolic phase
60 evaluation
61 experiments
62 first dynamic model
63 framework
64 full motion
65 heart
66 heart defects
67 high temporal resolution
68 imaging
69 information
70 interventional treatment
71 invasive method
72 investigation techniques
73 knowledge
74 learning-based techniques
75 magnetic resonance imaging
76 malformations
77 management
78 method
79 minimal invasive method
80 modalities
81 model
82 most cases
83 motion
84 newborns
85 non-invasive investigation technique
86 outflow track
87 paper
88 patient-specific models
89 phase
90 plane
91 planning
92 planning purposes
93 primary cause
94 properties
95 pulmonary trunk
96 pulmonary valve
97 purpose
98 reconstruction
99 regression-based reconstruction
100 resolution
101 resonance imaging
102 scans
103 seconds
104 sequence
105 setting
106 speed
107 system
108 technique
109 temporal information
110 temporal resolution
111 tomography
112 tool
113 track
114 treatment
115 trunk
116 trunk model
117 valve
118 whole cardiac cycle
119 schema:name Cross-Modality Assessment and Planning for Pulmonary Trunk Treatment Using CT and MRI Imaging
120 schema:pagination 460-467
121 schema:productId N797de97f174e4cb9b9bc1a9e22f82cc7
122 Nc37e86dabe594334be5599fb163ae502
123 Nc509b7e3b68e4f7f9ed6525114c8d840
124 schema:publisher Naacb9f9b98d84cbc9a128a2422063c09
125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003071427
126 https://doi.org/10.1007/978-3-642-15705-9_56
127 schema:sdDatePublished 2022-05-20T07:41
128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
129 schema:sdPublisher N91b4e94d178d4cb0a977a867e54eaf28
130 schema:url https://doi.org/10.1007/978-3-642-15705-9_56
131 sgo:license sg:explorer/license/
132 sgo:sdDataset chapters
133 rdf:type schema:Chapter
134 N087f3bdfc83b4371b6ddad7a7a89113d schema:isbn 978-3-642-15704-2
135 978-3-642-15705-9
136 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010
137 rdf:type schema:Book
138 N1226af9281f7464c8b83da37d8db20ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Algorithms
140 rdf:type schema:DefinedTerm
141 N1b406611b0bb47a6b0f740d32ed53231 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Tomography, X-Ray Computed
143 rdf:type schema:DefinedTerm
144 N21d72eb77a3f4e53b516029f07aaad3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Image Interpretation, Computer-Assisted
146 rdf:type schema:DefinedTerm
147 N27fef9571cb942b281b6177c70884ac6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Pattern Recognition, Automated
149 rdf:type schema:DefinedTerm
150 N29cf3d30ab0d4de28cc1791f23b12529 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Reproducibility of Results
152 rdf:type schema:DefinedTerm
153 N2e76d3408df345b0882f31b6da61ac5f rdf:first sg:person.01242456111.33
154 rdf:rest N85c43b3dfe434f5482b53ad20b559634
155 N3259468dbb1b496aaed36825a61136af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Sensitivity and Specificity
157 rdf:type schema:DefinedTerm
158 N32cc744e18bd48a2b2e69079d2885731 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Subtraction Technique
160 rdf:type schema:DefinedTerm
161 N410adb28703642e085cf9b9022c0478d rdf:first N862ee9dda0d94d9c9018269379e83c85
162 rdf:rest Nf5f12b742290499484a38514ab38c2fd
163 N4cf89f71301e4821bace482e5e6f5cf7 schema:affiliation grid-institutes:grid.419233.e
164 schema:familyName Huber
165 schema:givenName Martin
166 rdf:type schema:Person
167 N52e1ba18dfbf4ec79814bfe1e26fd52c rdf:first sg:person.0703547214.37
168 rdf:rest Nfed561940fb346beaa7ded5d494b0fa9
169 N569cf2cde9ea46d2821f7775ced207ce schema:familyName Navab
170 schema:givenName Nassir
171 rdf:type schema:Person
172 N5837aaeae514482c8311c620f30f8cda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Pulmonary Artery
174 rdf:type schema:DefinedTerm
175 N5e07390d2fc1412db3ffb068dadebc80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Image Enhancement
177 rdf:type schema:DefinedTerm
178 N6c0cb46e4d824c58a9e71db67341df44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Humans
180 rdf:type schema:DefinedTerm
181 N797de97f174e4cb9b9bc1a9e22f82cc7 schema:name doi
182 schema:value 10.1007/978-3-642-15705-9_56
183 rdf:type schema:PropertyValue
184 N85c43b3dfe434f5482b53ad20b559634 rdf:first sg:person.015310157176.53
185 rdf:rest Nbb1ad88163c4417883b20ceb3fc7952d
186 N862ee9dda0d94d9c9018269379e83c85 schema:familyName Jiang
187 schema:givenName Tianzi
188 rdf:type schema:Person
189 N8ac1222da0c74f139c734a237db907b2 rdf:first sg:person.01372425362.30
190 rdf:rest Na11e20b48f01433da9839f049d180f4a
191 N8f59cba5faf24b219fa6740f3ed752cb schema:familyName Viergever
192 schema:givenName Max A.
193 rdf:type schema:Person
194 N91b4e94d178d4cb0a977a867e54eaf28 schema:name Springer Nature - SN SciGraph project
195 rdf:type schema:Organization
196 N991342a26d66466c8864870feee64d32 rdf:first Nfcfbdb29fbd9417d9bdffbd6193c96d9
197 rdf:rest Nbdc0b8462cca44348bf70cff4c783505
198 N9faf355c42b24bd9af78c85d8132a141 rdf:first sg:person.01116702706.22
199 rdf:rest N8ac1222da0c74f139c734a237db907b2
200 Na11e20b48f01433da9839f049d180f4a rdf:first sg:person.01322323610.92
201 rdf:rest Ne00170303f034637b1706e7ef8046b3f
202 Naacb9f9b98d84cbc9a128a2422063c09 schema:name Springer Nature
203 rdf:type schema:Organisation
204 Nb666239f0de54562b8752453154094b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Heart Defects, Congenital
206 rdf:type schema:DefinedTerm
207 Nbb1ad88163c4417883b20ceb3fc7952d rdf:first sg:person.01010560470.38
208 rdf:rest N52e1ba18dfbf4ec79814bfe1e26fd52c
209 Nbdc0b8462cca44348bf70cff4c783505 rdf:first N8f59cba5faf24b219fa6740f3ed752cb
210 rdf:rest rdf:nil
211 Nc37e86dabe594334be5599fb163ae502 schema:name pubmed_id
212 schema:value 20879263
213 rdf:type schema:PropertyValue
214 Nc487de6cdb8e49deae5ee24bd4006bff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Magnetic Resonance Imaging
216 rdf:type schema:DefinedTerm
217 Nc509b7e3b68e4f7f9ed6525114c8d840 schema:name dimensions_id
218 schema:value pub.1003071427
219 rdf:type schema:PropertyValue
220 Ne00170303f034637b1706e7ef8046b3f rdf:first sg:person.01066111014.77
221 rdf:rest rdf:nil
222 Nf5f12b742290499484a38514ab38c2fd rdf:first N569cf2cde9ea46d2821f7775ced207ce
223 rdf:rest N991342a26d66466c8864870feee64d32
224 Nf70e7900f36b4a9a8ee8652aebaddc19 rdf:first sg:person.01120223741.15
225 rdf:rest N9faf355c42b24bd9af78c85d8132a141
226 Nfcfbdb29fbd9417d9bdffbd6193c96d9 schema:familyName Pluim
227 schema:givenName Josien P. W.
228 rdf:type schema:Person
229 Nfed561940fb346beaa7ded5d494b0fa9 rdf:first N4cf89f71301e4821bace482e5e6f5cf7
230 rdf:rest Nf70e7900f36b4a9a8ee8652aebaddc19
231 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
232 schema:name Information and Computing Sciences
233 rdf:type schema:DefinedTerm
234 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
235 schema:name Artificial Intelligence and Image Processing
236 rdf:type schema:DefinedTerm
237 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
238 schema:name Medical and Health Sciences
239 rdf:type schema:DefinedTerm
240 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
241 schema:name Cardiorespiratory Medicine and Haematology
242 rdf:type schema:DefinedTerm
243 sg:person.01010560470.38 schema:affiliation grid-institutes:grid.419233.e
244 schema:familyName Ionasec
245 schema:givenName Razvan Ioan
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38
247 rdf:type schema:Person
248 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
249 schema:familyName Comaniciu
250 schema:givenName Dorin
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
252 rdf:type schema:Person
253 sg:person.01116702706.22 schema:affiliation grid-institutes:grid.420468.c
254 schema:familyName Schievano
255 schema:givenName Silvia
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116702706.22
257 rdf:type schema:Person
258 sg:person.01120223741.15 schema:affiliation grid-institutes:grid.420468.c
259 schema:familyName Taylor
260 schema:givenName Andrew
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120223741.15
262 rdf:type schema:Person
263 sg:person.01242456111.33 schema:affiliation grid-institutes:grid.5330.5
264 schema:familyName Vitanovski
265 schema:givenName Dime
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33
267 rdf:type schema:Person
268 sg:person.01322323610.92 schema:affiliation grid-institutes:grid.5330.5
269 schema:familyName Hornegger
270 schema:givenName Joachim
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92
272 rdf:type schema:Person
273 sg:person.01372425362.30 schema:affiliation grid-institutes:grid.419233.e
274 schema:familyName Zhou
275 schema:givenName Shaohua Kevin
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30
277 rdf:type schema:Person
278 sg:person.015310157176.53 schema:affiliation grid-institutes:grid.419233.e
279 schema:familyName Tsymbal
280 schema:givenName Alexey
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310157176.53
282 rdf:type schema:Person
283 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
284 schema:familyName Georgescu
285 schema:givenName Bogdan
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
287 rdf:type schema:Person
288 grid-institutes:grid.419233.e schema:alternateName Integrated Data Systems, Siemens Corporate Research, Princeton, USA
289 schema:name Integrated Data Systems, Siemens Corporate Research, Princeton, USA
290 rdf:type schema:Organization
291 grid-institutes:grid.420468.c schema:alternateName Great Ormond Street Hospital for Children, London, England
292 schema:name Great Ormond Street Hospital for Children, London, England
293 rdf:type schema:Organization
294 grid-institutes:grid.5330.5 schema:alternateName Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
295 schema:name Integrated Data Systems, Siemens Corporate Research, Princeton, USA
296 Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
297 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...