Cardiac Anchoring in MRI through Context Modeling View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Xiaoguang Lu , Bogdan Georgescu , Marie-Pierre Jolly , Jens Guehring , Alistair Young , Brett Cowan , Arne Littmann , Dorin Comaniciu

ABSTRACT

Cardiac magnetic resonance imaging (MRI) has advanced to become a powerful diagnostic tool in clinical practice. Robust and fast cardiac modeling is important for structural and functional analysis of the heart. Cardiac anchors provide strong cues to extract morphological and functional features for diagnosis and disease monitoring. We present a fully automatic method and system that is able to detect these cues. The proposed approach explores expert knowledge embedded in a large annotated database. Exemplar cues in our experiments include left ventricle (LV) base plane and LV apex from long-axis images, and right ventricle (RV) insertion points from short-axis images. We evaluate the proposed approach on 8304 long-axis images from 188 patients and 891 short-axis images from 338 patients that are acquired from different vendors. In addition, another evaluation is conducted on an independent 7140 images from 87 patient studies. Experimental results show promise of the proposed approach. More... »

PAGES

383-390

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_47

DOI

http://dx.doi.org/10.1007/978-3-642-15705-9_47

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004818363

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20879254


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Anatomic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Xiaoguang", 
        "id": "sg:person.0656702353.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jolly", 
        "givenName": "Marie-Pierre", 
        "id": "sg:person.0614041027.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614041027.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guehring", 
        "givenName": "Jens", 
        "id": "sg:person.0776402627.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776402627.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Auckland MRI Research Group, University of Auckland, Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Auckland MRI Research Group, University of Auckland, Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Young", 
        "givenName": "Alistair", 
        "id": "sg:person.0672666523.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672666523.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Auckland MRI Research Group, University of Auckland, Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Auckland MRI Research Group, University of Auckland, Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cowan", 
        "givenName": "Brett", 
        "id": "sg:person.0576044067.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576044067.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Magnetic Resonance, Siemens Healthcare, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Magnetic Resonance, Siemens Healthcare, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Littmann", 
        "givenName": "Arne", 
        "id": "sg:person.01104057573.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104057573.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Cardiac magnetic resonance imaging (MRI) has advanced to become a powerful diagnostic tool in clinical practice. Robust and fast cardiac modeling is important for structural and functional analysis of the heart. Cardiac anchors provide strong cues to extract morphological and functional features for diagnosis and disease monitoring. We present a fully automatic method and system that is able to detect these cues. The proposed approach explores expert knowledge embedded in a large annotated database. Exemplar cues in our experiments include left ventricle (LV) base plane and LV apex from long-axis images, and right ventricle (RV) insertion points from short-axis images. We evaluate the proposed approach on 8304 long-axis images from 188 patients and 891 short-axis images from 338 patients that are acquired from different vendors. In addition, another evaluation is conducted on an independent 7140 images from 87 patient studies. Experimental results show promise of the proposed approach.", 
    "editor": [
      {
        "familyName": "Jiang", 
        "givenName": "Tianzi", 
        "type": "Person"
      }, 
      {
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "type": "Person"
      }, 
      {
        "familyName": "Pluim", 
        "givenName": "Josien P. W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Viergever", 
        "givenName": "Max A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15705-9_47", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15704-2", 
        "978-3-642-15705-9"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2010", 
      "type": "Book"
    }, 
    "keywords": [
      "magnetic resonance imaging", 
      "short-axis images", 
      "long-axis images", 
      "cardiac magnetic resonance imaging", 
      "LV apex", 
      "clinical practice", 
      "resonance imaging", 
      "disease monitoring", 
      "patient studies", 
      "patients", 
      "diagnostic tool", 
      "powerful diagnostic tool", 
      "insertion point", 
      "diagnosis", 
      "functional features", 
      "heart", 
      "functional analysis", 
      "imaging", 
      "cardiac modeling", 
      "cues", 
      "evaluation", 
      "study", 
      "database", 
      "apex", 
      "monitoring", 
      "promise", 
      "practice", 
      "addition", 
      "knowledge", 
      "analysis", 
      "features", 
      "results", 
      "images", 
      "approach", 
      "tool", 
      "anchors", 
      "method", 
      "point", 
      "strong cues", 
      "system", 
      "annotated database", 
      "large annotated database", 
      "experiments", 
      "anchoring", 
      "different vendors", 
      "automatic method", 
      "vendors", 
      "modeling", 
      "plane", 
      "base plane", 
      "expert knowledge", 
      "context modeling", 
      "experimental results"
    ], 
    "name": "Cardiac Anchoring in MRI through Context Modeling", 
    "pagination": "383-390", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004818363"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15705-9_47"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20879254"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15705-9_47", 
      "https://app.dimensions.ai/details/publication/pub.1004818363"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_370.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15705-9_47"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_47'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_47'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_47'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_47'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      23 PREDICATES      94 URIs      87 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15705-9_47 schema:about N1f386699512949619cde525616feff8d
2 N334471b1488148abb247a1a12eda662c
3 N343c1c4622984273ac6bf63a62912e98
4 N42a5624926f34b5eae2d46ef824c135f
5 N55351e9195f743f1920da11947a413b2
6 N85bc1ea3724f4b148c5a7933186485cf
7 Na5b5981d5fc2418cbc6ac8bf09a9a745
8 Nae504edabaa544209f0eadf536cff19b
9 Nb4f222445cd4474e9c0c698db6581785
10 Nb7ef4101c5ef425284b515173f977e0b
11 Nb8c485f38f134e5c9b9ec0bbffe01068
12 Nd06431240b744a479fab2c2fc5d04030
13 Nd857578aec6d4523a8f391b66b591ba3
14 Nf7e8d786d0fc40049b2105de00febb89
15 anzsrc-for:08
16 anzsrc-for:0801
17 schema:author N0eefa7c3128449c6a17244b7f32e86b3
18 schema:datePublished 2010
19 schema:datePublishedReg 2010-01-01
20 schema:description Cardiac magnetic resonance imaging (MRI) has advanced to become a powerful diagnostic tool in clinical practice. Robust and fast cardiac modeling is important for structural and functional analysis of the heart. Cardiac anchors provide strong cues to extract morphological and functional features for diagnosis and disease monitoring. We present a fully automatic method and system that is able to detect these cues. The proposed approach explores expert knowledge embedded in a large annotated database. Exemplar cues in our experiments include left ventricle (LV) base plane and LV apex from long-axis images, and right ventricle (RV) insertion points from short-axis images. We evaluate the proposed approach on 8304 long-axis images from 188 patients and 891 short-axis images from 338 patients that are acquired from different vendors. In addition, another evaluation is conducted on an independent 7140 images from 87 patient studies. Experimental results show promise of the proposed approach.
21 schema:editor Ndeeab7c905a644569141a30e51fe62e7
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Ned529a0a0df24db091a1de18de5e5952
26 schema:keywords LV apex
27 addition
28 analysis
29 anchoring
30 anchors
31 annotated database
32 apex
33 approach
34 automatic method
35 base plane
36 cardiac magnetic resonance imaging
37 cardiac modeling
38 clinical practice
39 context modeling
40 cues
41 database
42 diagnosis
43 diagnostic tool
44 different vendors
45 disease monitoring
46 evaluation
47 experimental results
48 experiments
49 expert knowledge
50 features
51 functional analysis
52 functional features
53 heart
54 images
55 imaging
56 insertion point
57 knowledge
58 large annotated database
59 long-axis images
60 magnetic resonance imaging
61 method
62 modeling
63 monitoring
64 patient studies
65 patients
66 plane
67 point
68 powerful diagnostic tool
69 practice
70 promise
71 resonance imaging
72 results
73 short-axis images
74 strong cues
75 study
76 system
77 tool
78 vendors
79 schema:name Cardiac Anchoring in MRI through Context Modeling
80 schema:pagination 383-390
81 schema:productId N5eb50f0ca428451ea0006b8038b99d9c
82 N65e6c7262b344ccf971edcb489cc2b9a
83 Ndf68deb8a7a747e486ca2700c76e7476
84 schema:publisher Ne8ac6eabd8f945d181bc670aef4f52b4
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004818363
86 https://doi.org/10.1007/978-3-642-15705-9_47
87 schema:sdDatePublished 2022-05-20T07:47
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N6ae2757b6c8845048b7a151b05d82bae
90 schema:url https://doi.org/10.1007/978-3-642-15705-9_47
91 sgo:license sg:explorer/license/
92 sgo:sdDataset chapters
93 rdf:type schema:Chapter
94 N0eefa7c3128449c6a17244b7f32e86b3 rdf:first sg:person.0656702353.18
95 rdf:rest N903db1cc5564439fb449753ab0808891
96 N1f386699512949619cde525616feff8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Image Interpretation, Computer-Assisted
98 rdf:type schema:DefinedTerm
99 N25954e3ce5834726b340a7ae382b3642 rdf:first sg:person.0776402627.05
100 rdf:rest Na0440104afda459f83d0d247c772b993
101 N2bef402eacff43c79f5f362347c56b94 rdf:first sg:person.0576044067.38
102 rdf:rest Nac798e42c3e3473d95e7d84587de04e6
103 N334471b1488148abb247a1a12eda662c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Humans
105 rdf:type schema:DefinedTerm
106 N343c1c4622984273ac6bf63a62912e98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Image Enhancement
108 rdf:type schema:DefinedTerm
109 N34f05fa3c5854c62aee861371ded13ff rdf:first Na34c78a8baa74d7786e26c30241e16bf
110 rdf:rest Nd5d5784d11f04923b61353931ff1c5dd
111 N3702eadc671d4e719287bdb6a178818d rdf:first Ne005fdfdb47144958de26310ff477f63
112 rdf:rest N34f05fa3c5854c62aee861371ded13ff
113 N3c17e6d30d154d92958574d2d13b0754 schema:familyName Viergever
114 schema:givenName Max A.
115 rdf:type schema:Person
116 N42a5624926f34b5eae2d46ef824c135f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Models, Cardiovascular
118 rdf:type schema:DefinedTerm
119 N55351e9195f743f1920da11947a413b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Pattern Recognition, Automated
121 rdf:type schema:DefinedTerm
122 N55aca6ddd45d4255840347b1818a0f63 rdf:first sg:person.01066111014.77
123 rdf:rest rdf:nil
124 N5940f17142634272b789040d8c882429 schema:familyName Jiang
125 schema:givenName Tianzi
126 rdf:type schema:Person
127 N5eb50f0ca428451ea0006b8038b99d9c schema:name pubmed_id
128 schema:value 20879254
129 rdf:type schema:PropertyValue
130 N65e6c7262b344ccf971edcb489cc2b9a schema:name dimensions_id
131 schema:value pub.1004818363
132 rdf:type schema:PropertyValue
133 N6ae2757b6c8845048b7a151b05d82bae schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 N85bc1ea3724f4b148c5a7933186485cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Algorithms
137 rdf:type schema:DefinedTerm
138 N903db1cc5564439fb449753ab0808891 rdf:first sg:person.0703547214.37
139 rdf:rest N9b8dc12ac790451cb6a2b0c89012435b
140 N9b8dc12ac790451cb6a2b0c89012435b rdf:first sg:person.0614041027.22
141 rdf:rest N25954e3ce5834726b340a7ae382b3642
142 Na0440104afda459f83d0d247c772b993 rdf:first sg:person.0672666523.08
143 rdf:rest N2bef402eacff43c79f5f362347c56b94
144 Na34c78a8baa74d7786e26c30241e16bf schema:familyName Pluim
145 schema:givenName Josien P. W.
146 rdf:type schema:Person
147 Na5b5981d5fc2418cbc6ac8bf09a9a745 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Heart
149 rdf:type schema:DefinedTerm
150 Nac798e42c3e3473d95e7d84587de04e6 rdf:first sg:person.01104057573.42
151 rdf:rest N55aca6ddd45d4255840347b1818a0f63
152 Nae504edabaa544209f0eadf536cff19b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Computer Simulation
154 rdf:type schema:DefinedTerm
155 Nb4f222445cd4474e9c0c698db6581785 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Reproducibility of Results
157 rdf:type schema:DefinedTerm
158 Nb7ef4101c5ef425284b515173f977e0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Models, Anatomic
160 rdf:type schema:DefinedTerm
161 Nb8c485f38f134e5c9b9ec0bbffe01068 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Magnetic Resonance Imaging
163 rdf:type schema:DefinedTerm
164 Nd06431240b744a479fab2c2fc5d04030 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Imaging, Three-Dimensional
166 rdf:type schema:DefinedTerm
167 Nd5d5784d11f04923b61353931ff1c5dd rdf:first N3c17e6d30d154d92958574d2d13b0754
168 rdf:rest rdf:nil
169 Nd857578aec6d4523a8f391b66b591ba3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Subtraction Technique
171 rdf:type schema:DefinedTerm
172 Ndeeab7c905a644569141a30e51fe62e7 rdf:first N5940f17142634272b789040d8c882429
173 rdf:rest N3702eadc671d4e719287bdb6a178818d
174 Ndf68deb8a7a747e486ca2700c76e7476 schema:name doi
175 schema:value 10.1007/978-3-642-15705-9_47
176 rdf:type schema:PropertyValue
177 Ne005fdfdb47144958de26310ff477f63 schema:familyName Navab
178 schema:givenName Nassir
179 rdf:type schema:Person
180 Ne8ac6eabd8f945d181bc670aef4f52b4 schema:name Springer Nature
181 rdf:type schema:Organisation
182 Ned529a0a0df24db091a1de18de5e5952 schema:isbn 978-3-642-15704-2
183 978-3-642-15705-9
184 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010
185 rdf:type schema:Book
186 Nf7e8d786d0fc40049b2105de00febb89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Sensitivity and Specificity
188 rdf:type schema:DefinedTerm
189 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
190 schema:name Information and Computing Sciences
191 rdf:type schema:DefinedTerm
192 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
193 schema:name Artificial Intelligence and Image Processing
194 rdf:type schema:DefinedTerm
195 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
196 schema:familyName Comaniciu
197 schema:givenName Dorin
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
199 rdf:type schema:Person
200 sg:person.01104057573.42 schema:affiliation grid-institutes:grid.5406.7
201 schema:familyName Littmann
202 schema:givenName Arne
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104057573.42
204 rdf:type schema:Person
205 sg:person.0576044067.38 schema:affiliation grid-institutes:grid.9654.e
206 schema:familyName Cowan
207 schema:givenName Brett
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576044067.38
209 rdf:type schema:Person
210 sg:person.0614041027.22 schema:affiliation grid-institutes:grid.419233.e
211 schema:familyName Jolly
212 schema:givenName Marie-Pierre
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614041027.22
214 rdf:type schema:Person
215 sg:person.0656702353.18 schema:affiliation grid-institutes:grid.419233.e
216 schema:familyName Lu
217 schema:givenName Xiaoguang
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18
219 rdf:type schema:Person
220 sg:person.0672666523.08 schema:affiliation grid-institutes:grid.9654.e
221 schema:familyName Young
222 schema:givenName Alistair
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672666523.08
224 rdf:type schema:Person
225 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
226 schema:familyName Georgescu
227 schema:givenName Bogdan
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
229 rdf:type schema:Person
230 sg:person.0776402627.05 schema:affiliation grid-institutes:grid.419233.e
231 schema:familyName Guehring
232 schema:givenName Jens
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776402627.05
234 rdf:type schema:Person
235 grid-institutes:grid.419233.e schema:alternateName Siemens Corporate Research, Princeton, NJ, USA
236 schema:name Siemens Corporate Research, Princeton, NJ, USA
237 rdf:type schema:Organization
238 grid-institutes:grid.5406.7 schema:alternateName Magnetic Resonance, Siemens Healthcare, Erlangen, Germany
239 schema:name Magnetic Resonance, Siemens Healthcare, Erlangen, Germany
240 rdf:type schema:Organization
241 grid-institutes:grid.9654.e schema:alternateName Auckland MRI Research Group, University of Auckland, Auckland, New Zealand
242 schema:name Auckland MRI Research Group, University of Auckland, Auckland, New Zealand
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...