Cardiac Anchoring in MRI through Context Modeling View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Xiaoguang Lu , Bogdan Georgescu , Marie-Pierre Jolly , Jens Guehring , Alistair Young , Brett Cowan , Arne Littmann , Dorin Comaniciu

ABSTRACT

Cardiac magnetic resonance imaging (MRI) has advanced to become a powerful diagnostic tool in clinical practice. Robust and fast cardiac modeling is important for structural and functional analysis of the heart. Cardiac anchors provide strong cues to extract morphological and functional features for diagnosis and disease monitoring. We present a fully automatic method and system that is able to detect these cues. The proposed approach explores expert knowledge embedded in a large annotated database. Exemplar cues in our experiments include left ventricle (LV) base plane and LV apex from long-axis images, and right ventricle (RV) insertion points from short-axis images. We evaluate the proposed approach on 8304 long-axis images from 188 patients and 891 short-axis images from 338 patients that are acquired from different vendors. In addition, another evaluation is conducted on an independent 7140 images from 87 patient studies. Experimental results show promise of the proposed approach. More... »

PAGES

383-390

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_47

DOI

http://dx.doi.org/10.1007/978-3-642-15705-9_47

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004818363

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20879254


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Anatomic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Xiaoguang", 
        "id": "sg:person.0656702353.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jolly", 
        "givenName": "Marie-Pierre", 
        "id": "sg:person.0614041027.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614041027.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guehring", 
        "givenName": "Jens", 
        "id": "sg:person.0776402627.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776402627.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Auckland MRI Research Group, University of Auckland, Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Auckland MRI Research Group, University of Auckland, Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Young", 
        "givenName": "Alistair", 
        "id": "sg:person.0672666523.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672666523.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Auckland MRI Research Group, University of Auckland, Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Auckland MRI Research Group, University of Auckland, Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cowan", 
        "givenName": "Brett", 
        "id": "sg:person.0576044067.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576044067.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Magnetic Resonance, Siemens Healthcare, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Magnetic Resonance, Siemens Healthcare, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Littmann", 
        "givenName": "Arne", 
        "id": "sg:person.01104057573.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104057573.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Cardiac magnetic resonance imaging (MRI) has advanced to become a powerful diagnostic tool in clinical practice. Robust and fast cardiac modeling is important for structural and functional analysis of the heart. Cardiac anchors provide strong cues to extract morphological and functional features for diagnosis and disease monitoring. We present a fully automatic method and system that is able to detect these cues. The proposed approach explores expert knowledge embedded in a large annotated database. Exemplar cues in our experiments include left ventricle (LV) base plane and LV apex from long-axis images, and right ventricle (RV) insertion points from short-axis images. We evaluate the proposed approach on 8304 long-axis images from 188 patients and 891 short-axis images from 338 patients that are acquired from different vendors. In addition, another evaluation is conducted on an independent 7140 images from 87 patient studies. Experimental results show promise of the proposed approach.", 
    "editor": [
      {
        "familyName": "Jiang", 
        "givenName": "Tianzi", 
        "type": "Person"
      }, 
      {
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "type": "Person"
      }, 
      {
        "familyName": "Pluim", 
        "givenName": "Josien P. W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Viergever", 
        "givenName": "Max A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15705-9_47", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15704-2", 
        "978-3-642-15705-9"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2010", 
      "type": "Book"
    }, 
    "keywords": [
      "magnetic resonance imaging", 
      "short-axis images", 
      "long-axis images", 
      "cardiac magnetic resonance imaging", 
      "LV apex", 
      "clinical practice", 
      "resonance imaging", 
      "disease monitoring", 
      "patient studies", 
      "patients", 
      "diagnostic tool", 
      "powerful diagnostic tool", 
      "insertion point", 
      "diagnosis", 
      "functional features", 
      "heart", 
      "functional analysis", 
      "imaging", 
      "cues", 
      "evaluation", 
      "study", 
      "cardiac modeling", 
      "database", 
      "apex", 
      "monitoring", 
      "practice", 
      "promise", 
      "addition", 
      "knowledge", 
      "features", 
      "analysis", 
      "results", 
      "images", 
      "approach", 
      "tool", 
      "anchors", 
      "strong cue", 
      "method", 
      "point", 
      "system", 
      "annotated database", 
      "experiments", 
      "anchoring", 
      "different vendors", 
      "automatic method", 
      "modeling", 
      "plane", 
      "vendors", 
      "base plane", 
      "large annotated database", 
      "expert knowledge", 
      "experimental results", 
      "context modeling", 
      "fast cardiac modeling", 
      "Cardiac anchors", 
      "approach explores expert knowledge", 
      "explores expert knowledge", 
      "Exemplar cues", 
      "left ventricle (LV) base plane", 
      "ventricle (LV) base plane", 
      "right ventricle (RV) insertion points", 
      "ventricle (RV) insertion points", 
      "Cardiac Anchoring"
    ], 
    "name": "Cardiac Anchoring in MRI through Context Modeling", 
    "pagination": "383-390", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004818363"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15705-9_47"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20879254"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15705-9_47", 
      "https://app.dimensions.ai/details/publication/pub.1004818363"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_413.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15705-9_47"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_47'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_47'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_47'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15705-9_47'


 

This table displays all metadata directly associated to this object as RDF triples.

253 TRIPLES      23 PREDICATES      104 URIs      97 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15705-9_47 schema:about N0c799ddd32f54e99bccf97f822ef6e21
2 N212b6628f38d46c08e24cd37eb9535ce
3 N25996b1dd35f483f974957bef2065eb2
4 N3277427de67048489ab34f31aeab9ed8
5 N3bc821bc8333443981f6f6c98facf638
6 N617b1738fc20447f9e9254e3cc68a965
7 N6467dcfcc4a34e09b56b9cd3140bd4ba
8 N72871f35f988454dabba61cf55043d7d
9 N8bd0e9a02aa54082935a8aa8aeab6c23
10 N912903acffac4b509a8b50e63d3aa966
11 Naa723ecaddda44aa91d9df348aabd466
12 Ncd1414f80cc74803a533f1ef58947d1a
13 Nd6cd9940b99d403d898a6c1d8f27df5d
14 Nfac48237fd064d7fb09c5df9a6e0a7c9
15 anzsrc-for:08
16 anzsrc-for:0801
17 schema:author Ndf44f0976b614833b0333d96c4de2abc
18 schema:datePublished 2010
19 schema:datePublishedReg 2010-01-01
20 schema:description Cardiac magnetic resonance imaging (MRI) has advanced to become a powerful diagnostic tool in clinical practice. Robust and fast cardiac modeling is important for structural and functional analysis of the heart. Cardiac anchors provide strong cues to extract morphological and functional features for diagnosis and disease monitoring. We present a fully automatic method and system that is able to detect these cues. The proposed approach explores expert knowledge embedded in a large annotated database. Exemplar cues in our experiments include left ventricle (LV) base plane and LV apex from long-axis images, and right ventricle (RV) insertion points from short-axis images. We evaluate the proposed approach on 8304 long-axis images from 188 patients and 891 short-axis images from 338 patients that are acquired from different vendors. In addition, another evaluation is conducted on an independent 7140 images from 87 patient studies. Experimental results show promise of the proposed approach.
21 schema:editor Ndcb23ea2a50549fab748554a5afcdd24
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Nfcfe4493d11945429adad61156ed32d1
26 schema:keywords Cardiac Anchoring
27 Cardiac anchors
28 Exemplar cues
29 LV apex
30 addition
31 analysis
32 anchoring
33 anchors
34 annotated database
35 apex
36 approach
37 approach explores expert knowledge
38 automatic method
39 base plane
40 cardiac magnetic resonance imaging
41 cardiac modeling
42 clinical practice
43 context modeling
44 cues
45 database
46 diagnosis
47 diagnostic tool
48 different vendors
49 disease monitoring
50 evaluation
51 experimental results
52 experiments
53 expert knowledge
54 explores expert knowledge
55 fast cardiac modeling
56 features
57 functional analysis
58 functional features
59 heart
60 images
61 imaging
62 insertion point
63 knowledge
64 large annotated database
65 left ventricle (LV) base plane
66 long-axis images
67 magnetic resonance imaging
68 method
69 modeling
70 monitoring
71 patient studies
72 patients
73 plane
74 point
75 powerful diagnostic tool
76 practice
77 promise
78 resonance imaging
79 results
80 right ventricle (RV) insertion points
81 short-axis images
82 strong cue
83 study
84 system
85 tool
86 vendors
87 ventricle (LV) base plane
88 ventricle (RV) insertion points
89 schema:name Cardiac Anchoring in MRI through Context Modeling
90 schema:pagination 383-390
91 schema:productId N8416c73c6fd649cdaddebbfcd144c92b
92 Nb409029c92974e2bb90babc97af15d09
93 Ne0773595776e40e9b61051c47c0aceaf
94 schema:publisher N8f551bab07b24c93b875a159e28ff5c6
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004818363
96 https://doi.org/10.1007/978-3-642-15705-9_47
97 schema:sdDatePublished 2022-01-01T19:24
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N890c4a0b14fe496aab6e0652c6b74f21
100 schema:url https://doi.org/10.1007/978-3-642-15705-9_47
101 sgo:license sg:explorer/license/
102 sgo:sdDataset chapters
103 rdf:type schema:Chapter
104 N0810fcbf346f4df5932ff541d5088d3e rdf:first Nc2717b7450d246acb232959704ce5a26
105 rdf:rest N7adb50fc2979401f8cb19d038535203c
106 N0c799ddd32f54e99bccf97f822ef6e21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Magnetic Resonance Imaging
108 rdf:type schema:DefinedTerm
109 N12a8e78f79b2402b8f4e90f6f965ee5d rdf:first sg:person.01066111014.77
110 rdf:rest rdf:nil
111 N212b6628f38d46c08e24cd37eb9535ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Computer Simulation
113 rdf:type schema:DefinedTerm
114 N25996b1dd35f483f974957bef2065eb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Image Interpretation, Computer-Assisted
116 rdf:type schema:DefinedTerm
117 N2c2abde823574ae59fb44c516459c040 schema:familyName Jiang
118 schema:givenName Tianzi
119 rdf:type schema:Person
120 N3277427de67048489ab34f31aeab9ed8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Pattern Recognition, Automated
122 rdf:type schema:DefinedTerm
123 N378f7215952e4c468381e6963aabc6c6 schema:familyName Navab
124 schema:givenName Nassir
125 rdf:type schema:Person
126 N39edcb6402904f26b2e5a00ef8dc88d8 rdf:first sg:person.0776402627.05
127 rdf:rest N4775aacec3fb450aa45a59a0aad7ac6c
128 N3bc821bc8333443981f6f6c98facf638 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Models, Anatomic
130 rdf:type schema:DefinedTerm
131 N4775aacec3fb450aa45a59a0aad7ac6c rdf:first sg:person.0672666523.08
132 rdf:rest N98a361ecebd7417ca610daf52ea50bee
133 N565047f2c7ba4fe69671f733dc455000 schema:familyName Viergever
134 schema:givenName Max A.
135 rdf:type schema:Person
136 N5d873dba55a34378a5e99f0dbf46435b rdf:first sg:person.0703547214.37
137 rdf:rest Nb5ba0e6de37c46148f556947bde1997f
138 N617b1738fc20447f9e9254e3cc68a965 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Image Enhancement
140 rdf:type schema:DefinedTerm
141 N6467dcfcc4a34e09b56b9cd3140bd4ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Subtraction Technique
143 rdf:type schema:DefinedTerm
144 N72871f35f988454dabba61cf55043d7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Heart
146 rdf:type schema:DefinedTerm
147 N7adb50fc2979401f8cb19d038535203c rdf:first N565047f2c7ba4fe69671f733dc455000
148 rdf:rest rdf:nil
149 N8416c73c6fd649cdaddebbfcd144c92b schema:name pubmed_id
150 schema:value 20879254
151 rdf:type schema:PropertyValue
152 N859ab805b68444e583580ee851aaabb1 rdf:first N378f7215952e4c468381e6963aabc6c6
153 rdf:rest N0810fcbf346f4df5932ff541d5088d3e
154 N890c4a0b14fe496aab6e0652c6b74f21 schema:name Springer Nature - SN SciGraph project
155 rdf:type schema:Organization
156 N8bd0e9a02aa54082935a8aa8aeab6c23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Sensitivity and Specificity
158 rdf:type schema:DefinedTerm
159 N8f551bab07b24c93b875a159e28ff5c6 schema:name Springer Nature
160 rdf:type schema:Organisation
161 N912903acffac4b509a8b50e63d3aa966 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Algorithms
163 rdf:type schema:DefinedTerm
164 N98a361ecebd7417ca610daf52ea50bee rdf:first sg:person.0576044067.38
165 rdf:rest Nf3320c380cbf482e815ab58ece957813
166 Naa723ecaddda44aa91d9df348aabd466 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Reproducibility of Results
168 rdf:type schema:DefinedTerm
169 Nb409029c92974e2bb90babc97af15d09 schema:name doi
170 schema:value 10.1007/978-3-642-15705-9_47
171 rdf:type schema:PropertyValue
172 Nb5ba0e6de37c46148f556947bde1997f rdf:first sg:person.0614041027.22
173 rdf:rest N39edcb6402904f26b2e5a00ef8dc88d8
174 Nc2717b7450d246acb232959704ce5a26 schema:familyName Pluim
175 schema:givenName Josien P. W.
176 rdf:type schema:Person
177 Ncd1414f80cc74803a533f1ef58947d1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Models, Cardiovascular
179 rdf:type schema:DefinedTerm
180 Nd6cd9940b99d403d898a6c1d8f27df5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Humans
182 rdf:type schema:DefinedTerm
183 Ndcb23ea2a50549fab748554a5afcdd24 rdf:first N2c2abde823574ae59fb44c516459c040
184 rdf:rest N859ab805b68444e583580ee851aaabb1
185 Ndf44f0976b614833b0333d96c4de2abc rdf:first sg:person.0656702353.18
186 rdf:rest N5d873dba55a34378a5e99f0dbf46435b
187 Ne0773595776e40e9b61051c47c0aceaf schema:name dimensions_id
188 schema:value pub.1004818363
189 rdf:type schema:PropertyValue
190 Nf3320c380cbf482e815ab58ece957813 rdf:first sg:person.01104057573.42
191 rdf:rest N12a8e78f79b2402b8f4e90f6f965ee5d
192 Nfac48237fd064d7fb09c5df9a6e0a7c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Imaging, Three-Dimensional
194 rdf:type schema:DefinedTerm
195 Nfcfe4493d11945429adad61156ed32d1 schema:isbn 978-3-642-15704-2
196 978-3-642-15705-9
197 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010
198 rdf:type schema:Book
199 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
200 schema:name Information and Computing Sciences
201 rdf:type schema:DefinedTerm
202 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
203 schema:name Artificial Intelligence and Image Processing
204 rdf:type schema:DefinedTerm
205 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
206 schema:familyName Comaniciu
207 schema:givenName Dorin
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
209 rdf:type schema:Person
210 sg:person.01104057573.42 schema:affiliation grid-institutes:grid.5406.7
211 schema:familyName Littmann
212 schema:givenName Arne
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104057573.42
214 rdf:type schema:Person
215 sg:person.0576044067.38 schema:affiliation grid-institutes:grid.9654.e
216 schema:familyName Cowan
217 schema:givenName Brett
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576044067.38
219 rdf:type schema:Person
220 sg:person.0614041027.22 schema:affiliation grid-institutes:grid.419233.e
221 schema:familyName Jolly
222 schema:givenName Marie-Pierre
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614041027.22
224 rdf:type schema:Person
225 sg:person.0656702353.18 schema:affiliation grid-institutes:grid.419233.e
226 schema:familyName Lu
227 schema:givenName Xiaoguang
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18
229 rdf:type schema:Person
230 sg:person.0672666523.08 schema:affiliation grid-institutes:grid.9654.e
231 schema:familyName Young
232 schema:givenName Alistair
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672666523.08
234 rdf:type schema:Person
235 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
236 schema:familyName Georgescu
237 schema:givenName Bogdan
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
239 rdf:type schema:Person
240 sg:person.0776402627.05 schema:affiliation grid-institutes:grid.419233.e
241 schema:familyName Guehring
242 schema:givenName Jens
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776402627.05
244 rdf:type schema:Person
245 grid-institutes:grid.419233.e schema:alternateName Siemens Corporate Research, Princeton, NJ, USA
246 schema:name Siemens Corporate Research, Princeton, NJ, USA
247 rdf:type schema:Organization
248 grid-institutes:grid.5406.7 schema:alternateName Magnetic Resonance, Siemens Healthcare, Erlangen, Germany
249 schema:name Magnetic Resonance, Siemens Healthcare, Erlangen, Germany
250 rdf:type schema:Organization
251 grid-institutes:grid.9654.e schema:alternateName Auckland MRI Research Group, University of Auckland, Auckland, New Zealand
252 schema:name Auckland MRI Research Group, University of Auckland, Auckland, New Zealand
253 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...