A Novel ASM-Based Two-Stage Facial Landmark Detection Method View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Ting-Chia Hsu , Yea-Shuan Huang , Fang-Hsuan Cheng

ABSTRACT

The active shape model (ASM) has been successfully applied to locate facial landmarks. However, in some exaggerated facial expressions, such as surprise, laugh and provoked eyebrows, it is prone to make mistaken detection. To overcome this difficulty, we propose a two-stage facial landmark detection algorithm. In the first stage, we focus on detecting the individual salient corner-type facial landmarks by applying a commonly-used Adaboosting-based algorithm, and then further apply a global ASM to refine the positions of these landmarks iteratively. In the second stage, the individual detection results of the corner-type facial landmarks serve as the initial positions of active shape model which can be further iteratively refined by an ASM algorithm. Experimental results demonstrate that the proposed method can achieve very good performance in locating facial landmarks and it consistently and considerably outperforms the traditional ASM method. More... »

PAGES

526-537

Book

TITLE

Advances in Multimedia Information Processing - PCM 2010

ISBN

978-3-642-15695-3
978-3-642-15696-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15696-0_49

DOI

http://dx.doi.org/10.1007/978-3-642-15696-0_49

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008488151


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "Ting-Chia", 
        "id": "sg:person.011545372672.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011545372672.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Yea-Shuan", 
        "id": "sg:person.012326676553.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012326676553.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Fang-Hsuan", 
        "id": "sg:person.014601526575.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601526575.62"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "The active shape model (ASM) has been successfully applied to locate facial landmarks. However, in some exaggerated facial expressions, such as surprise, laugh and provoked eyebrows, it is prone to make mistaken detection. To overcome this difficulty, we propose a two-stage facial landmark detection algorithm. In the first stage, we focus on detecting the individual salient corner-type facial landmarks by applying a commonly-used Adaboosting-based algorithm, and then further apply a global ASM to refine the positions of these landmarks iteratively. In the second stage, the individual detection results of the corner-type facial landmarks serve as the initial positions of active shape model which can be further iteratively refined by an ASM algorithm. Experimental results demonstrate that the proposed method can achieve very good performance in locating facial landmarks and it consistently and considerably outperforms the traditional ASM method.", 
    "editor": [
      {
        "familyName": "Qiu", 
        "givenName": "Guoping", 
        "type": "Person"
      }, 
      {
        "familyName": "Lam", 
        "givenName": "Kin Man", 
        "type": "Person"
      }, 
      {
        "familyName": "Kiya", 
        "givenName": "Hitoshi", 
        "type": "Person"
      }, 
      {
        "familyName": "Xue", 
        "givenName": "Xiang-Yang", 
        "type": "Person"
      }, 
      {
        "familyName": "Kuo", 
        "givenName": "C.-C. Jay", 
        "type": "Person"
      }, 
      {
        "familyName": "Lew", 
        "givenName": "Michael S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15696-0_49", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15695-3", 
        "978-3-642-15696-0"
      ], 
      "name": "Advances in Multimedia Information Processing - PCM 2010", 
      "type": "Book"
    }, 
    "keywords": [
      "Active Shape Model", 
      "facial landmarks", 
      "shape model", 
      "facial landmark detection algorithms", 
      "landmark detection algorithm", 
      "facial landmark detection methods", 
      "landmark detection method", 
      "exaggerated facial expressions", 
      "detection algorithm", 
      "novel Active Shape Model", 
      "mistaken detection", 
      "algorithm", 
      "individual detection results", 
      "detection results", 
      "ASM algorithm", 
      "better performance", 
      "traditional ASM method", 
      "ASM method", 
      "detection method", 
      "landmarks", 
      "facial expressions", 
      "AdaBoosting", 
      "initial position", 
      "experimental results", 
      "first stage", 
      "second stage", 
      "model", 
      "detection", 
      "method", 
      "performance", 
      "eyebrows", 
      "difficulties", 
      "position", 
      "results", 
      "surprise", 
      "stage", 
      "laugh", 
      "expression", 
      "two-stage facial landmark detection algorithm", 
      "individual salient corner-type facial landmarks", 
      "salient corner-type facial landmarks", 
      "corner-type facial landmarks", 
      "global ASM", 
      "Two-Stage Facial Landmark Detection Method"
    ], 
    "name": "A Novel ASM-Based Two-Stage Facial Landmark Detection Method", 
    "pagination": "526-537", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008488151"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15696-0_49"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15696-0_49", 
      "https://app.dimensions.ai/details/publication/pub.1008488151"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_309.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15696-0_49"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15696-0_49'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15696-0_49'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15696-0_49'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15696-0_49'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      23 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15696-0_49 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N1e518c87b90846ceac2b5e6f78136c3a
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description The active shape model (ASM) has been successfully applied to locate facial landmarks. However, in some exaggerated facial expressions, such as surprise, laugh and provoked eyebrows, it is prone to make mistaken detection. To overcome this difficulty, we propose a two-stage facial landmark detection algorithm. In the first stage, we focus on detecting the individual salient corner-type facial landmarks by applying a commonly-used Adaboosting-based algorithm, and then further apply a global ASM to refine the positions of these landmarks iteratively. In the second stage, the individual detection results of the corner-type facial landmarks serve as the initial positions of active shape model which can be further iteratively refined by an ASM algorithm. Experimental results demonstrate that the proposed method can achieve very good performance in locating facial landmarks and it consistently and considerably outperforms the traditional ASM method.
7 schema:editor N9118c9de6cb94cecabcd8019ae0ffd70
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N53a28783883c4bc8966fbac3c5e1ec13
12 schema:keywords ASM algorithm
13 ASM method
14 Active Shape Model
15 AdaBoosting
16 Two-Stage Facial Landmark Detection Method
17 algorithm
18 better performance
19 corner-type facial landmarks
20 detection
21 detection algorithm
22 detection method
23 detection results
24 difficulties
25 exaggerated facial expressions
26 experimental results
27 expression
28 eyebrows
29 facial expressions
30 facial landmark detection algorithms
31 facial landmark detection methods
32 facial landmarks
33 first stage
34 global ASM
35 individual detection results
36 individual salient corner-type facial landmarks
37 initial position
38 landmark detection algorithm
39 landmark detection method
40 landmarks
41 laugh
42 method
43 mistaken detection
44 model
45 novel Active Shape Model
46 performance
47 position
48 results
49 salient corner-type facial landmarks
50 second stage
51 shape model
52 stage
53 surprise
54 traditional ASM method
55 two-stage facial landmark detection algorithm
56 schema:name A Novel ASM-Based Two-Stage Facial Landmark Detection Method
57 schema:pagination 526-537
58 schema:productId N229b9291805b4f9a99df6ea7cf0b816a
59 N51ba6db026144d108c068977cb43a742
60 schema:publisher N475ac98e1b394e24bf22e7791f40672c
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008488151
62 https://doi.org/10.1007/978-3-642-15696-0_49
63 schema:sdDatePublished 2022-01-01T19:18
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nbcf3fd544cc84b72aeaa3a853b757446
66 schema:url https://doi.org/10.1007/978-3-642-15696-0_49
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N111061ac8e29459da1cc388ff97282c0 schema:familyName Lam
71 schema:givenName Kin Man
72 rdf:type schema:Person
73 N13ab2b2bc1344a5a84ddce6b05b281d8 schema:familyName Lew
74 schema:givenName Michael S.
75 rdf:type schema:Person
76 N14177b603936422494299ccc36c26029 rdf:first sg:person.014601526575.62
77 rdf:rest rdf:nil
78 N15aba80376694a8f88fbae9790c66b6e schema:familyName Qiu
79 schema:givenName Guoping
80 rdf:type schema:Person
81 N1e518c87b90846ceac2b5e6f78136c3a rdf:first sg:person.011545372672.16
82 rdf:rest N49fe22bd6e604b04abd33f87787d1bd1
83 N229b9291805b4f9a99df6ea7cf0b816a schema:name doi
84 schema:value 10.1007/978-3-642-15696-0_49
85 rdf:type schema:PropertyValue
86 N358481c2b52444c089ba63d85699a06f schema:familyName Kiya
87 schema:givenName Hitoshi
88 rdf:type schema:Person
89 N4117b3eacbd64dd0b9e26c65b5a3802b rdf:first N13ab2b2bc1344a5a84ddce6b05b281d8
90 rdf:rest rdf:nil
91 N475ac98e1b394e24bf22e7791f40672c schema:name Springer Nature
92 rdf:type schema:Organisation
93 N49fe22bd6e604b04abd33f87787d1bd1 rdf:first sg:person.012326676553.58
94 rdf:rest N14177b603936422494299ccc36c26029
95 N4b4e831b192b428ea7e248d7b7920065 schema:familyName Kuo
96 schema:givenName C.-C. Jay
97 rdf:type schema:Person
98 N51ba6db026144d108c068977cb43a742 schema:name dimensions_id
99 schema:value pub.1008488151
100 rdf:type schema:PropertyValue
101 N53a28783883c4bc8966fbac3c5e1ec13 schema:isbn 978-3-642-15695-3
102 978-3-642-15696-0
103 schema:name Advances in Multimedia Information Processing - PCM 2010
104 rdf:type schema:Book
105 N66b11578a8e74fdf90a500c8e0eb2072 rdf:first N358481c2b52444c089ba63d85699a06f
106 rdf:rest Nb2b9d1d16055430ebd6ebda0c660bbb0
107 N9118c9de6cb94cecabcd8019ae0ffd70 rdf:first N15aba80376694a8f88fbae9790c66b6e
108 rdf:rest Ndab635cebd6f4659b82a7e5fc7598466
109 Nb04be64e3ab94964a95fa29b01592c45 rdf:first N4b4e831b192b428ea7e248d7b7920065
110 rdf:rest N4117b3eacbd64dd0b9e26c65b5a3802b
111 Nb2b9d1d16055430ebd6ebda0c660bbb0 rdf:first Ne4e25909d0cf4cda8b5846ef1b6e9a7e
112 rdf:rest Nb04be64e3ab94964a95fa29b01592c45
113 Nbcf3fd544cc84b72aeaa3a853b757446 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Ndab635cebd6f4659b82a7e5fc7598466 rdf:first N111061ac8e29459da1cc388ff97282c0
116 rdf:rest N66b11578a8e74fdf90a500c8e0eb2072
117 Ne4e25909d0cf4cda8b5846ef1b6e9a7e schema:familyName Xue
118 schema:givenName Xiang-Yang
119 rdf:type schema:Person
120 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
121 schema:name Psychology and Cognitive Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
124 schema:name Psychology
125 rdf:type schema:DefinedTerm
126 sg:person.011545372672.16 schema:affiliation grid-institutes:grid.411655.2
127 schema:familyName Hsu
128 schema:givenName Ting-Chia
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011545372672.16
130 rdf:type schema:Person
131 sg:person.012326676553.58 schema:affiliation grid-institutes:grid.411655.2
132 schema:familyName Huang
133 schema:givenName Yea-Shuan
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012326676553.58
135 rdf:type schema:Person
136 sg:person.014601526575.62 schema:affiliation grid-institutes:grid.411655.2
137 schema:familyName Cheng
138 schema:givenName Fang-Hsuan
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601526575.62
140 rdf:type schema:Person
141 grid-institutes:grid.411655.2 schema:alternateName Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan
142 schema:name Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...