A Novel ASM-Based Two-Stage Facial Landmark Detection Method View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Ting-Chia Hsu , Yea-Shuan Huang , Fang-Hsuan Cheng

ABSTRACT

The active shape model (ASM) has been successfully applied to locate facial landmarks. However, in some exaggerated facial expressions, such as surprise, laugh and provoked eyebrows, it is prone to make mistaken detection. To overcome this difficulty, we propose a two-stage facial landmark detection algorithm. In the first stage, we focus on detecting the individual salient corner-type facial landmarks by applying a commonly-used Adaboosting-based algorithm, and then further apply a global ASM to refine the positions of these landmarks iteratively. In the second stage, the individual detection results of the corner-type facial landmarks serve as the initial positions of active shape model which can be further iteratively refined by an ASM algorithm. Experimental results demonstrate that the proposed method can achieve very good performance in locating facial landmarks and it consistently and considerably outperforms the traditional ASM method. More... »

PAGES

526-537

Book

TITLE

Advances in Multimedia Information Processing - PCM 2010

ISBN

978-3-642-15695-3
978-3-642-15696-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15696-0_49

DOI

http://dx.doi.org/10.1007/978-3-642-15696-0_49

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008488151


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "Ting-Chia", 
        "id": "sg:person.011545372672.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011545372672.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Yea-Shuan", 
        "id": "sg:person.012326676553.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012326676553.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Fang-Hsuan", 
        "id": "sg:person.014601526575.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601526575.62"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "The active shape model (ASM) has been successfully applied to locate facial landmarks. However, in some exaggerated facial expressions, such as surprise, laugh and provoked eyebrows, it is prone to make mistaken detection. To overcome this difficulty, we propose a two-stage facial landmark detection algorithm. In the first stage, we focus on detecting the individual salient corner-type facial landmarks by applying a commonly-used Adaboosting-based algorithm, and then further apply a global ASM to refine the positions of these landmarks iteratively. In the second stage, the individual detection results of the corner-type facial landmarks serve as the initial positions of active shape model which can be further iteratively refined by an ASM algorithm. Experimental results demonstrate that the proposed method can achieve very good performance in locating facial landmarks and it consistently and considerably outperforms the traditional ASM method.", 
    "editor": [
      {
        "familyName": "Qiu", 
        "givenName": "Guoping", 
        "type": "Person"
      }, 
      {
        "familyName": "Lam", 
        "givenName": "Kin Man", 
        "type": "Person"
      }, 
      {
        "familyName": "Kiya", 
        "givenName": "Hitoshi", 
        "type": "Person"
      }, 
      {
        "familyName": "Xue", 
        "givenName": "Xiang-Yang", 
        "type": "Person"
      }, 
      {
        "familyName": "Kuo", 
        "givenName": "C.-C. Jay", 
        "type": "Person"
      }, 
      {
        "familyName": "Lew", 
        "givenName": "Michael S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15696-0_49", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15695-3", 
        "978-3-642-15696-0"
      ], 
      "name": "Advances in Multimedia Information Processing - PCM 2010", 
      "type": "Book"
    }, 
    "keywords": [
      "Active Shape Model", 
      "facial landmarks", 
      "shape model", 
      "facial landmark detection algorithms", 
      "landmark detection algorithm", 
      "facial landmark detection methods", 
      "landmark detection method", 
      "exaggerated facial expressions", 
      "detection algorithm", 
      "novel Active Shape Model", 
      "mistaken detection", 
      "algorithm", 
      "individual detection results", 
      "detection results", 
      "ASM algorithm", 
      "better performance", 
      "traditional ASM method", 
      "ASM method", 
      "detection method", 
      "landmarks", 
      "facial expressions", 
      "AdaBoosting", 
      "initial position", 
      "experimental results", 
      "first stage", 
      "second stage", 
      "model", 
      "detection", 
      "method", 
      "performance", 
      "eyebrows", 
      "difficulties", 
      "position", 
      "results", 
      "surprise", 
      "stage", 
      "laugh", 
      "expression", 
      "two-stage facial landmark detection algorithm", 
      "individual salient corner-type facial landmarks", 
      "salient corner-type facial landmarks", 
      "corner-type facial landmarks", 
      "global ASM", 
      "Two-Stage Facial Landmark Detection Method"
    ], 
    "name": "A Novel ASM-Based Two-Stage Facial Landmark Detection Method", 
    "pagination": "526-537", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008488151"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15696-0_49"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15696-0_49", 
      "https://app.dimensions.ai/details/publication/pub.1008488151"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_325.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15696-0_49"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15696-0_49'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15696-0_49'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15696-0_49'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15696-0_49'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      23 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15696-0_49 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N340ba2db2d90466684695bdf34c5a4ac
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description The active shape model (ASM) has been successfully applied to locate facial landmarks. However, in some exaggerated facial expressions, such as surprise, laugh and provoked eyebrows, it is prone to make mistaken detection. To overcome this difficulty, we propose a two-stage facial landmark detection algorithm. In the first stage, we focus on detecting the individual salient corner-type facial landmarks by applying a commonly-used Adaboosting-based algorithm, and then further apply a global ASM to refine the positions of these landmarks iteratively. In the second stage, the individual detection results of the corner-type facial landmarks serve as the initial positions of active shape model which can be further iteratively refined by an ASM algorithm. Experimental results demonstrate that the proposed method can achieve very good performance in locating facial landmarks and it consistently and considerably outperforms the traditional ASM method.
7 schema:editor N6273f13dcd0740dbad9498c6e863e578
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N8397204d66c844949d348097ba49a2b0
12 schema:keywords ASM algorithm
13 ASM method
14 Active Shape Model
15 AdaBoosting
16 Two-Stage Facial Landmark Detection Method
17 algorithm
18 better performance
19 corner-type facial landmarks
20 detection
21 detection algorithm
22 detection method
23 detection results
24 difficulties
25 exaggerated facial expressions
26 experimental results
27 expression
28 eyebrows
29 facial expressions
30 facial landmark detection algorithms
31 facial landmark detection methods
32 facial landmarks
33 first stage
34 global ASM
35 individual detection results
36 individual salient corner-type facial landmarks
37 initial position
38 landmark detection algorithm
39 landmark detection method
40 landmarks
41 laugh
42 method
43 mistaken detection
44 model
45 novel Active Shape Model
46 performance
47 position
48 results
49 salient corner-type facial landmarks
50 second stage
51 shape model
52 stage
53 surprise
54 traditional ASM method
55 two-stage facial landmark detection algorithm
56 schema:name A Novel ASM-Based Two-Stage Facial Landmark Detection Method
57 schema:pagination 526-537
58 schema:productId N0eee3244e09e4470933b933d0ebe067a
59 N31542ed2c9a1403db4a9c222136fd336
60 schema:publisher N224f1eb6f9e4480c837a890d58b4519a
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008488151
62 https://doi.org/10.1007/978-3-642-15696-0_49
63 schema:sdDatePublished 2021-11-01T18:55
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nad670b40a89c46bb84592749c5d8d42a
66 schema:url https://doi.org/10.1007/978-3-642-15696-0_49
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N0eee3244e09e4470933b933d0ebe067a schema:name dimensions_id
71 schema:value pub.1008488151
72 rdf:type schema:PropertyValue
73 N12f8099e941c47fea70e007c048a049a rdf:first N8f6680b5c9bc4a0fa8c50ae95a9f1363
74 rdf:rest N3866087f3f594c4c8fea30fd3f223b07
75 N224f1eb6f9e4480c837a890d58b4519a schema:name Springer Nature
76 rdf:type schema:Organisation
77 N31542ed2c9a1403db4a9c222136fd336 schema:name doi
78 schema:value 10.1007/978-3-642-15696-0_49
79 rdf:type schema:PropertyValue
80 N340ba2db2d90466684695bdf34c5a4ac rdf:first sg:person.011545372672.16
81 rdf:rest N82748051bae14dd4baabcb7d5df5a5fa
82 N3866087f3f594c4c8fea30fd3f223b07 rdf:first N5a6480aa0e5b4b1496a7c3b640500603
83 rdf:rest Nc7842c3d76364453856e5c519584320f
84 N5a6480aa0e5b4b1496a7c3b640500603 schema:familyName Kuo
85 schema:givenName C.-C. Jay
86 rdf:type schema:Person
87 N6273f13dcd0740dbad9498c6e863e578 rdf:first N9bc0e5a3deb147d9a31904f1adb2e0e2
88 rdf:rest Nf5580bde5238418199a76810a386e9de
89 N82748051bae14dd4baabcb7d5df5a5fa rdf:first sg:person.012326676553.58
90 rdf:rest Nd57d6a917c04479d8c2f402e46d2ee7e
91 N8397204d66c844949d348097ba49a2b0 schema:isbn 978-3-642-15695-3
92 978-3-642-15696-0
93 schema:name Advances in Multimedia Information Processing - PCM 2010
94 rdf:type schema:Book
95 N8f6680b5c9bc4a0fa8c50ae95a9f1363 schema:familyName Xue
96 schema:givenName Xiang-Yang
97 rdf:type schema:Person
98 N98efe4e68e784bc9be524ae4ab734271 rdf:first Nae0cf347798e4763984820292d552c71
99 rdf:rest N12f8099e941c47fea70e007c048a049a
100 N9bc0e5a3deb147d9a31904f1adb2e0e2 schema:familyName Qiu
101 schema:givenName Guoping
102 rdf:type schema:Person
103 Nad670b40a89c46bb84592749c5d8d42a schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Nae0cf347798e4763984820292d552c71 schema:familyName Kiya
106 schema:givenName Hitoshi
107 rdf:type schema:Person
108 Nb93d8423e9e94ed8916ae7433e6b6379 schema:familyName Lam
109 schema:givenName Kin Man
110 rdf:type schema:Person
111 Nc7842c3d76364453856e5c519584320f rdf:first Nf29fa09f66e8497a8917f180564b60e2
112 rdf:rest rdf:nil
113 Nd57d6a917c04479d8c2f402e46d2ee7e rdf:first sg:person.014601526575.62
114 rdf:rest rdf:nil
115 Nf29fa09f66e8497a8917f180564b60e2 schema:familyName Lew
116 schema:givenName Michael S.
117 rdf:type schema:Person
118 Nf5580bde5238418199a76810a386e9de rdf:first Nb93d8423e9e94ed8916ae7433e6b6379
119 rdf:rest N98efe4e68e784bc9be524ae4ab734271
120 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
121 schema:name Psychology and Cognitive Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
124 schema:name Psychology
125 rdf:type schema:DefinedTerm
126 sg:person.011545372672.16 schema:affiliation grid-institutes:grid.411655.2
127 schema:familyName Hsu
128 schema:givenName Ting-Chia
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011545372672.16
130 rdf:type schema:Person
131 sg:person.012326676553.58 schema:affiliation grid-institutes:grid.411655.2
132 schema:familyName Huang
133 schema:givenName Yea-Shuan
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012326676553.58
135 rdf:type schema:Person
136 sg:person.014601526575.62 schema:affiliation grid-institutes:grid.411655.2
137 schema:familyName Cheng
138 schema:givenName Fang-Hsuan
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601526575.62
140 rdf:type schema:Person
141 grid-institutes:grid.411655.2 schema:alternateName Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan
142 schema:name Computer Science & Information Engineering Department, Chung-Hua University, Hsinchu, Taiwan
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...