Reliable and Efficient Geometric Computing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Kurt Mehlhorn

ABSTRACT

Computing with geometric objects (points, curves, and surfaces) is central for many engineering disciplines and lies at the heart of computer aided design systems. Implementing geometric algorithms is notoriously difficult and most actual implementations are incomplete: they are known to crash or deliver the wrong result on some instances.

PAGES

10-11

Book

TITLE

Mathematical Software – ICMS 2010

ISBN

978-3-642-15581-9
978-3-642-15582-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15582-6_3

DOI

http://dx.doi.org/10.1007/978-3-642-15582-6_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034540831


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Informatik", 
          "id": "http://www.grid.ac/institutes/grid.419528.3", 
          "name": [
            "Max-Planck-Institut f\u00fcr Informatik"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehlhorn", 
        "givenName": "Kurt", 
        "id": "sg:person.011757371347.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757371347.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Computing with geometric objects (points, curves, and surfaces) is central for many engineering disciplines and lies at the heart of computer aided design systems. Implementing geometric algorithms is notoriously difficult and most actual implementations are incomplete: they are known to crash or deliver the wrong result on some instances.", 
    "editor": [
      {
        "familyName": "Fukuda", 
        "givenName": "Komei", 
        "type": "Person"
      }, 
      {
        "familyName": "Hoeven", 
        "givenName": "Joris van der", 
        "type": "Person"
      }, 
      {
        "familyName": "Joswig", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Takayama", 
        "givenName": "Nobuki", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15582-6_3", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15581-9", 
        "978-3-642-15582-6"
      ], 
      "name": "Mathematical Software \u2013 ICMS 2010", 
      "type": "Book"
    }, 
    "keywords": [
      "geometric computing", 
      "geometric objects", 
      "geometric algorithms", 
      "design system", 
      "engineering disciplines", 
      "actual implementation", 
      "wrong results", 
      "computing", 
      "computer", 
      "algorithm", 
      "objects", 
      "implementation", 
      "instances", 
      "system", 
      "lies", 
      "disciplines", 
      "results", 
      "heart"
    ], 
    "name": "Reliable and Efficient Geometric Computing", 
    "pagination": "10-11", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034540831"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15582-6_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15582-6_3", 
      "https://app.dimensions.ai/details/publication/pub.1034540831"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T07:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_98.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15582-6_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15582-6_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15582-6_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15582-6_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15582-6_3'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      22 PREDICATES      43 URIs      36 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15582-6_3 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N8c9872d7e3a440c4b28853231c886489
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description Computing with geometric objects (points, curves, and surfaces) is central for many engineering disciplines and lies at the heart of computer aided design systems. Implementing geometric algorithms is notoriously difficult and most actual implementations are incomplete: they are known to crash or deliver the wrong result on some instances.
7 schema:editor N60838006cc5842e8a14c134e4d5f3c08
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N27f34a517387499b9de765940f13180a
11 schema:keywords actual implementation
12 algorithm
13 computer
14 computing
15 design system
16 disciplines
17 engineering disciplines
18 geometric algorithms
19 geometric computing
20 geometric objects
21 heart
22 implementation
23 instances
24 lies
25 objects
26 results
27 system
28 wrong results
29 schema:name Reliable and Efficient Geometric Computing
30 schema:pagination 10-11
31 schema:productId N2af5fed6a93243589e75e629f5724233
32 N3c30bbffd423418bb437cd235325e7c6
33 schema:publisher N8463927af72843ca97a38ddcee9ff5b3
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034540831
35 https://doi.org/10.1007/978-3-642-15582-6_3
36 schema:sdDatePublished 2022-10-01T07:01
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N341ff31d3ee549b4a0849108418aecaa
39 schema:url https://doi.org/10.1007/978-3-642-15582-6_3
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N10c6358c14bb49c3985256b64d514263 rdf:first Ncdeb228dcd4c4ce2b71672ea3ed0ee8c
44 rdf:rest Ndfe3026258c44122a3a1d7c5df9198be
45 N21bcc8746ad54c25b3adc0a9b8b1a951 schema:familyName Fukuda
46 schema:givenName Komei
47 rdf:type schema:Person
48 N27f34a517387499b9de765940f13180a schema:isbn 978-3-642-15581-9
49 978-3-642-15582-6
50 schema:name Mathematical Software – ICMS 2010
51 rdf:type schema:Book
52 N2af5fed6a93243589e75e629f5724233 schema:name doi
53 schema:value 10.1007/978-3-642-15582-6_3
54 rdf:type schema:PropertyValue
55 N341ff31d3ee549b4a0849108418aecaa schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N3c30bbffd423418bb437cd235325e7c6 schema:name dimensions_id
58 schema:value pub.1034540831
59 rdf:type schema:PropertyValue
60 N53cf276f32d54d7db4eccec78b3ae434 rdf:first Na3d64273dc944880b4aaf51dff13bdc7
61 rdf:rest rdf:nil
62 N60838006cc5842e8a14c134e4d5f3c08 rdf:first N21bcc8746ad54c25b3adc0a9b8b1a951
63 rdf:rest N10c6358c14bb49c3985256b64d514263
64 N8463927af72843ca97a38ddcee9ff5b3 schema:name Springer Nature
65 rdf:type schema:Organisation
66 N8c9872d7e3a440c4b28853231c886489 rdf:first sg:person.011757371347.43
67 rdf:rest rdf:nil
68 Na3d64273dc944880b4aaf51dff13bdc7 schema:familyName Takayama
69 schema:givenName Nobuki
70 rdf:type schema:Person
71 Ncdeb228dcd4c4ce2b71672ea3ed0ee8c schema:familyName Hoeven
72 schema:givenName Joris van der
73 rdf:type schema:Person
74 Ndace35e7b052484aaffc4626ae647081 schema:familyName Joswig
75 schema:givenName Michael
76 rdf:type schema:Person
77 Ndfe3026258c44122a3a1d7c5df9198be rdf:first Ndace35e7b052484aaffc4626ae647081
78 rdf:rest N53cf276f32d54d7db4eccec78b3ae434
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
83 schema:name Computation Theory and Mathematics
84 rdf:type schema:DefinedTerm
85 sg:person.011757371347.43 schema:affiliation grid-institutes:grid.419528.3
86 schema:familyName Mehlhorn
87 schema:givenName Kurt
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757371347.43
89 rdf:type schema:Person
90 grid-institutes:grid.419528.3 schema:alternateName Max-Planck-Institut für Informatik
91 schema:name Max-Planck-Institut für Informatik
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...