Graph Cut Based Inference with Co-occurrence Statistics View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Lubor Ladicky , Chris Russell , Pushmeet Kohli , Philip H. S. Torr

ABSTRACT

Markov and Conditional random fields (crfs) used in computer vision typically model only local interactions between variables, as this is computationally tractable. In this paper we consider a class of global potentials defined over all variables in the crf. We show how they can be readily optimised using standard graph cut algorithms at little extra expense compared to a standard pairwise field. This result can be directly used for the problem of class based image segmentation which has seen increasing recent interest within computer vision. Here the aim is to assign a label to each pixel of a given image from a set of possible object classes. Typically these methods use random fields to model local interactions between pixels or super-pixels. One of the cues that helps recognition is global object co-occurrence statistics, a measure of which classes (such as chair or motorbike) are likely to occur in the same image together. There have been several approaches proposed to exploit this property, but all of them suffer from different limitations and typically carry a high computational cost, preventing their application on large images. We find that the new model we propose produces an improvement in the labelling compared to just using a pairwise model. More... »

PAGES

239-253

Book

TITLE

Computer Vision – ECCV 2010

ISBN

978-3-642-15554-3
978-3-642-15555-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15555-0_18

DOI

http://dx.doi.org/10.1007/978-3-642-15555-0_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028844592


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Oxford Brookes"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ladicky", 
        "givenName": "Lubor", 
        "id": "sg:person.011034367256.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034367256.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Oxford Brookes"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Russell", 
        "givenName": "Chris", 
        "id": "sg:person.014162633413.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014162633413.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Microsoft Research"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohli", 
        "givenName": "Pushmeet", 
        "id": "sg:person.0606005504.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606005504.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Oxford Brookes"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torr", 
        "givenName": "Philip H. S.", 
        "id": "sg:person.011757175441.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757175441.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-88682-2_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004295540", 
          "https://doi.org/10.1007/978-3-540-88682-2_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88682-2_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004295540", 
          "https://doi.org/10.1007/978-3-540-88682-2_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-007-9048-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014979091", 
          "https://doi.org/10.1007/s10589-007-9048-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-007-9048-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014979091", 
          "https://doi.org/10.1007/s10589-007-9048-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744023_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017544873", 
          "https://doi.org/10.1007/11744023_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744023_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017544873", 
          "https://doi.org/10.1007/11744023_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15561-1_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018304069", 
          "https://doi.org/10.1007/978-3-642-15561-1_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15561-1_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018304069", 
          "https://doi.org/10.1007/978-3-642-15561-1_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744047_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021485887", 
          "https://doi.org/10.1007/11744047_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744047_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021485887", 
          "https://doi.org/10.1007/11744047_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744047_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027267363", 
          "https://doi.org/10.1007/11744047_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744047_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027267363", 
          "https://doi.org/10.1007/11744047_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.910585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.1000236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061155588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077867063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093171528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093296270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2003.1238354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093621895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093703458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093864237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094015870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094236874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094294309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2007.4408986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094860556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5539897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094861969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094986810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095049126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095068040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.22.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099325554"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Markov and Conditional random fields (crfs) used in computer vision typically model only local interactions between variables, as this is computationally tractable. In this paper we consider a class of global potentials defined over all variables in the crf. We show how they can be readily optimised using standard graph cut algorithms at little extra expense compared to a standard pairwise field. This result can be directly used for the problem of class based image segmentation which has seen increasing recent interest within computer vision. Here the aim is to assign a label to each pixel of a given image from a set of possible object classes. Typically these methods use random fields to model local interactions between pixels or super-pixels. One of the cues that helps recognition is global object co-occurrence statistics, a measure of which classes (such as chair or motorbike) are likely to occur in the same image together. There have been several approaches proposed to exploit this property, but all of them suffer from different limitations and typically carry a high computational cost, preventing their application on large images. We find that the new model we propose produces an improvement in the labelling compared to just using a pairwise model.", 
    "editor": [
      {
        "familyName": "Daniilidis", 
        "givenName": "Kostas", 
        "type": "Person"
      }, 
      {
        "familyName": "Maragos", 
        "givenName": "Petros", 
        "type": "Person"
      }, 
      {
        "familyName": "Paragios", 
        "givenName": "Nikos", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15555-0_18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15554-3", 
        "978-3-642-15555-0"
      ], 
      "name": "Computer Vision \u2013 ECCV 2010", 
      "type": "Book"
    }, 
    "name": "Graph Cut Based Inference with Co-occurrence Statistics", 
    "pagination": "239-253", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028844592"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15555-0_18"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "89685f47ab7f794f0843b6869ee169bfa06b65edae0c17dad16789f5513208d1"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15555-0_18", 
      "https://app.dimensions.ai/details/publication/pub.1028844592"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87097_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-15555-0_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15555-0_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15555-0_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15555-0_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15555-0_18'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15555-0_18 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N727e51b8d08b42b0a1ded559f1de6e41
4 schema:citation sg:pub.10.1007/11744023_1
5 sg:pub.10.1007/11744047_1
6 sg:pub.10.1007/11744047_2
7 sg:pub.10.1007/978-3-540-88682-2_4
8 sg:pub.10.1007/978-3-642-15561-1_31
9 sg:pub.10.1007/s10589-007-9048-6
10 https://doi.org/10.1109/18.910585
11 https://doi.org/10.1109/34.1000236
12 https://doi.org/10.1109/cvpr.2005.130
13 https://doi.org/10.1109/cvpr.2006.276
14 https://doi.org/10.1109/cvpr.2006.326
15 https://doi.org/10.1109/cvpr.2007.383045
16 https://doi.org/10.1109/cvpr.2007.383229
17 https://doi.org/10.1109/cvpr.2008.4587417
18 https://doi.org/10.1109/cvpr.2008.4587453
19 https://doi.org/10.1109/cvpr.2008.4587799
20 https://doi.org/10.1109/cvpr.2010.5539897
21 https://doi.org/10.1109/cvpr.2010.5540221
22 https://doi.org/10.1109/iccv.2003.1238354
23 https://doi.org/10.1109/iccv.2007.4408986
24 https://doi.org/10.1109/iccv.2009.5459211
25 https://doi.org/10.1109/iccv.2009.5459248
26 https://doi.org/10.1109/tpami.2006.200
27 https://doi.org/10.1109/tpami.2008.105
28 https://doi.org/10.5244/c.22.22
29 schema:datePublished 2010
30 schema:datePublishedReg 2010-01-01
31 schema:description Markov and Conditional random fields (crfs) used in computer vision typically model only local interactions between variables, as this is computationally tractable. In this paper we consider a class of global potentials defined over all variables in the crf. We show how they can be readily optimised using standard graph cut algorithms at little extra expense compared to a standard pairwise field. This result can be directly used for the problem of class based image segmentation which has seen increasing recent interest within computer vision. Here the aim is to assign a label to each pixel of a given image from a set of possible object classes. Typically these methods use random fields to model local interactions between pixels or super-pixels. One of the cues that helps recognition is global object co-occurrence statistics, a measure of which classes (such as chair or motorbike) are likely to occur in the same image together. There have been several approaches proposed to exploit this property, but all of them suffer from different limitations and typically carry a high computational cost, preventing their application on large images. We find that the new model we propose produces an improvement in the labelling compared to just using a pairwise model.
32 schema:editor N1520cf9b5521462d8da5b0b0a93012c7
33 schema:genre chapter
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N63701be66ee04cbb988c2a2b31ad48f6
37 schema:name Graph Cut Based Inference with Co-occurrence Statistics
38 schema:pagination 239-253
39 schema:productId N13d8d22f57c74515bc59004df8676efe
40 N3523715484f6449bb4da4cd4676a1439
41 Ne36313a1ad6a40a1b619718401d516dd
42 schema:publisher Nded0bbfe6c6547559354588b5a190b69
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028844592
44 https://doi.org/10.1007/978-3-642-15555-0_18
45 schema:sdDatePublished 2019-04-16T08:18
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Na08de930b0d44166b7ec1dd9956a400d
48 schema:url https://link.springer.com/10.1007%2F978-3-642-15555-0_18
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N0a117e71776e4905a29fb3ac8585d218 schema:name Microsoft Research
53 rdf:type schema:Organization
54 N13d8d22f57c74515bc59004df8676efe schema:name dimensions_id
55 schema:value pub.1028844592
56 rdf:type schema:PropertyValue
57 N1520cf9b5521462d8da5b0b0a93012c7 rdf:first Nb3c0c422b8e6488d8636ec44c1897db0
58 rdf:rest Nad8c66b5dfb34c82b480d42c6288c845
59 N2b7aa55dadc3494690e582faf038f7ea schema:familyName Maragos
60 schema:givenName Petros
61 rdf:type schema:Person
62 N3523715484f6449bb4da4cd4676a1439 schema:name readcube_id
63 schema:value 89685f47ab7f794f0843b6869ee169bfa06b65edae0c17dad16789f5513208d1
64 rdf:type schema:PropertyValue
65 N4753f95bb03e489bbeb9539a5e7313d5 schema:name Oxford Brookes
66 rdf:type schema:Organization
67 N63701be66ee04cbb988c2a2b31ad48f6 schema:isbn 978-3-642-15554-3
68 978-3-642-15555-0
69 schema:name Computer Vision – ECCV 2010
70 rdf:type schema:Book
71 N727e51b8d08b42b0a1ded559f1de6e41 rdf:first sg:person.011034367256.51
72 rdf:rest Nb1d30e36add04d91aabe9a1e4b191bb4
73 N994118ed019a44cfa0e16658f495a449 rdf:first sg:person.0606005504.21
74 rdf:rest Nc90430bb9b1a484ea3b55db2d90c5d58
75 Na08de930b0d44166b7ec1dd9956a400d schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nad8c66b5dfb34c82b480d42c6288c845 rdf:first N2b7aa55dadc3494690e582faf038f7ea
78 rdf:rest Nbde4f1a8799340dcbcffc5216428acfc
79 Nb1d30e36add04d91aabe9a1e4b191bb4 rdf:first sg:person.014162633413.55
80 rdf:rest N994118ed019a44cfa0e16658f495a449
81 Nb3c0c422b8e6488d8636ec44c1897db0 schema:familyName Daniilidis
82 schema:givenName Kostas
83 rdf:type schema:Person
84 Nbde4f1a8799340dcbcffc5216428acfc rdf:first Nd465acc449f54c9092985cd1771341df
85 rdf:rest rdf:nil
86 Nc90430bb9b1a484ea3b55db2d90c5d58 rdf:first sg:person.011757175441.72
87 rdf:rest rdf:nil
88 Nd02213b728af48c9bc9a92e7473baa5a schema:name Oxford Brookes
89 rdf:type schema:Organization
90 Nd465acc449f54c9092985cd1771341df schema:familyName Paragios
91 schema:givenName Nikos
92 rdf:type schema:Person
93 Nded0bbfe6c6547559354588b5a190b69 schema:location Berlin, Heidelberg
94 schema:name Springer Berlin Heidelberg
95 rdf:type schema:Organisation
96 Ne36313a1ad6a40a1b619718401d516dd schema:name doi
97 schema:value 10.1007/978-3-642-15555-0_18
98 rdf:type schema:PropertyValue
99 Neef4f18318694e1483ce6d9b17f84731 schema:name Oxford Brookes
100 rdf:type schema:Organization
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
105 schema:name Artificial Intelligence and Image Processing
106 rdf:type schema:DefinedTerm
107 sg:person.011034367256.51 schema:affiliation N4753f95bb03e489bbeb9539a5e7313d5
108 schema:familyName Ladicky
109 schema:givenName Lubor
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034367256.51
111 rdf:type schema:Person
112 sg:person.011757175441.72 schema:affiliation Nd02213b728af48c9bc9a92e7473baa5a
113 schema:familyName Torr
114 schema:givenName Philip H. S.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757175441.72
116 rdf:type schema:Person
117 sg:person.014162633413.55 schema:affiliation Neef4f18318694e1483ce6d9b17f84731
118 schema:familyName Russell
119 schema:givenName Chris
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014162633413.55
121 rdf:type schema:Person
122 sg:person.0606005504.21 schema:affiliation N0a117e71776e4905a29fb3ac8585d218
123 schema:familyName Kohli
124 schema:givenName Pushmeet
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606005504.21
126 rdf:type schema:Person
127 sg:pub.10.1007/11744023_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017544873
128 https://doi.org/10.1007/11744023_1
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/11744047_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027267363
131 https://doi.org/10.1007/11744047_1
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/11744047_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021485887
134 https://doi.org/10.1007/11744047_2
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-540-88682-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004295540
137 https://doi.org/10.1007/978-3-540-88682-2_4
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-642-15561-1_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018304069
140 https://doi.org/10.1007/978-3-642-15561-1_31
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10589-007-9048-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014979091
143 https://doi.org/10.1007/s10589-007-9048-6
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/18.910585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101592
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/34.1000236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155588
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/cvpr.2005.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093171528
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/cvpr.2006.276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093703458
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/cvpr.2006.326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095068040
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/cvpr.2007.383045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094236874
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/cvpr.2007.383229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077867063
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/cvpr.2008.4587417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095049126
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/cvpr.2008.4587453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094986810
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/cvpr.2008.4587799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093864237
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/cvpr.2010.5539897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094861969
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/cvpr.2010.5540221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094015870
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/iccv.2003.1238354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093621895
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/iccv.2007.4408986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094860556
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/iccv.2009.5459211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093296270
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/iccv.2009.5459248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094294309
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tpami.2006.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743038
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tpami.2008.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743467
180 rdf:type schema:CreativeWork
181 https://doi.org/10.5244/c.22.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099325554
182 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...