Image Classification Using Super-Vector Coding of Local Image Descriptors View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Xi Zhou , Kai Yu , Tong Zhang , Thomas S. Huang

ABSTRACT

This paper introduces a new framework for image classification using local visual descriptors. The pipeline first performs a nonlinear feature transformation on descriptors, then aggregates the results together to form image-level representations, and finally applies a classification model. For all the three steps we suggest novel solutions which make our approach appealing in theory, more scalable in computation, and transparent in classification. Our experiments demonstrate that the proposed classification method achieves state-of-the-art accuracy on the well-known PASCAL benchmarks. More... »

PAGES

141-154

Book

TITLE

Computer Vision – ECCV 2010

ISBN

978-3-642-15554-3
978-3-642-15555-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15555-0_11

DOI

http://dx.doi.org/10.1007/978-3-642-15555-0_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044213993


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dept. of ECE, University of Illnois at Urbana-Champaign"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xi", 
        "id": "sg:person.013513202775.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013513202775.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NEC Laboratories America, Cupertino, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Kai", 
        "id": "sg:person.015365401647.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365401647.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Statistics, Rutgers University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Tong", 
        "id": "sg:person.015165710332.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015165710332.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dept. of ECE, University of Illnois at Urbana-Champaign"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Thomas S.", 
        "id": "sg:person.011374774067.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374774067.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cviu.2005.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004784969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88690-7_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009765396", 
          "https://doi.org/10.1007/978-3-540-88690-7_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88690-7_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009765396", 
          "https://doi.org/10.1007/978-3-540-88690-7_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45167-9_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013863491", 
          "https://doi.org/10.1007/978-3-540-45167-9_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-009-0275-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014796149", 
          "https://doi.org/10.1007/s11263-009-0275-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-009-0275-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014796149", 
          "https://doi.org/10.1007/s11263-009-0275-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1282280.1282340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033635059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1273496.1273592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052861703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.726791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093176609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093880961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094512911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094696425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095180230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095244523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095244523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2007.4408875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095251623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095271325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095271325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095559903"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "This paper introduces a new framework for image classification using local visual descriptors. The pipeline first performs a nonlinear feature transformation on descriptors, then aggregates the results together to form image-level representations, and finally applies a classification model. For all the three steps we suggest novel solutions which make our approach appealing in theory, more scalable in computation, and transparent in classification. Our experiments demonstrate that the proposed classification method achieves state-of-the-art accuracy on the well-known PASCAL benchmarks.", 
    "editor": [
      {
        "familyName": "Daniilidis", 
        "givenName": "Kostas", 
        "type": "Person"
      }, 
      {
        "familyName": "Maragos", 
        "givenName": "Petros", 
        "type": "Person"
      }, 
      {
        "familyName": "Paragios", 
        "givenName": "Nikos", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15555-0_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15554-3", 
        "978-3-642-15555-0"
      ], 
      "name": "Computer Vision \u2013 ECCV 2010", 
      "type": "Book"
    }, 
    "name": "Image Classification Using Super-Vector Coding of Local Image Descriptors", 
    "pagination": "141-154", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044213993"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15555-0_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d29af1b681c14b39bdc2d58bd39f0f343d77ff3c9d4ab569393ba8991cc78551"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15555-0_11", 
      "https://app.dimensions.ai/details/publication/pub.1044213993"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-15555-0_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15555-0_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15555-0_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15555-0_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15555-0_11'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15555-0_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N88202cf37aa74f87b0e8e69c278c2b65
4 schema:citation sg:pub.10.1007/978-3-540-45167-9_6
5 sg:pub.10.1007/978-3-540-88690-7_24
6 sg:pub.10.1007/s11263-009-0275-4
7 https://doi.org/10.1016/j.cviu.2005.09.012
8 https://doi.org/10.1109/5.726791
9 https://doi.org/10.1109/cvpr.2005.16
10 https://doi.org/10.1109/cvpr.2005.254
11 https://doi.org/10.1109/cvpr.2006.301
12 https://doi.org/10.1109/cvpr.2006.68
13 https://doi.org/10.1109/cvpr.2007.383266
14 https://doi.org/10.1109/cvpr.2008.4587633
15 https://doi.org/10.1109/cvpr.2009.5206757
16 https://doi.org/10.1109/iccv.2007.4408875
17 https://doi.org/10.1109/iccv.2009.5459435
18 https://doi.org/10.1145/1273496.1273592
19 https://doi.org/10.1145/1282280.1282340
20 schema:datePublished 2010
21 schema:datePublishedReg 2010-01-01
22 schema:description This paper introduces a new framework for image classification using local visual descriptors. The pipeline first performs a nonlinear feature transformation on descriptors, then aggregates the results together to form image-level representations, and finally applies a classification model. For all the three steps we suggest novel solutions which make our approach appealing in theory, more scalable in computation, and transparent in classification. Our experiments demonstrate that the proposed classification method achieves state-of-the-art accuracy on the well-known PASCAL benchmarks.
23 schema:editor Nc9c2b0ddac744d66bc01ed5f4f6dd945
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N51ce58e60d334848a519e541bc505640
28 schema:name Image Classification Using Super-Vector Coding of Local Image Descriptors
29 schema:pagination 141-154
30 schema:productId N569c131730984b2b96b10c8dab010493
31 N6cbe1dd0c1dd400a977e0586172c28d3
32 Nbb738edfc3994c0493ba47f70aa3700f
33 schema:publisher Na0c9772e9e9a4305b71815b470172435
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044213993
35 https://doi.org/10.1007/978-3-642-15555-0_11
36 schema:sdDatePublished 2019-04-16T08:20
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nb8f3ad58bb334c1e8f3b9121414ad0d1
39 schema:url https://link.springer.com/10.1007%2F978-3-642-15555-0_11
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N0e272a9db6bc411aa74f21df42262ba5 rdf:first N7fa4afe7892e45148e7a7a0e4241cc1f
44 rdf:rest Nc0f91469beca46fea9064d502cf5a512
45 N2adee907cf974340833d59408f0b1d4b schema:name NEC Laboratories America, Cupertino, CA
46 rdf:type schema:Organization
47 N3e8f6155a7dd4e9f80958076f0effe9b rdf:first sg:person.015365401647.88
48 rdf:rest Nb5b83523e5a947c380f15ae75b0610ba
49 N51ce58e60d334848a519e541bc505640 schema:isbn 978-3-642-15554-3
50 978-3-642-15555-0
51 schema:name Computer Vision – ECCV 2010
52 rdf:type schema:Book
53 N569c131730984b2b96b10c8dab010493 schema:name dimensions_id
54 schema:value pub.1044213993
55 rdf:type schema:PropertyValue
56 N6cbe1dd0c1dd400a977e0586172c28d3 schema:name readcube_id
57 schema:value d29af1b681c14b39bdc2d58bd39f0f343d77ff3c9d4ab569393ba8991cc78551
58 rdf:type schema:PropertyValue
59 N7aed1458a6964fecad455fe95719afed schema:name Dept. of ECE, University of Illnois at Urbana-Champaign
60 rdf:type schema:Organization
61 N7fa4afe7892e45148e7a7a0e4241cc1f schema:familyName Maragos
62 schema:givenName Petros
63 rdf:type schema:Person
64 N88202cf37aa74f87b0e8e69c278c2b65 rdf:first sg:person.013513202775.26
65 rdf:rest N3e8f6155a7dd4e9f80958076f0effe9b
66 N8fcd773861a443dfbf23f81dac15561b schema:familyName Daniilidis
67 schema:givenName Kostas
68 rdf:type schema:Person
69 Na087b9f3529140e1aa7382f28edbbd16 rdf:first sg:person.011374774067.03
70 rdf:rest rdf:nil
71 Na0c9772e9e9a4305b71815b470172435 schema:location Berlin, Heidelberg
72 schema:name Springer Berlin Heidelberg
73 rdf:type schema:Organisation
74 Nb5b83523e5a947c380f15ae75b0610ba rdf:first sg:person.015165710332.53
75 rdf:rest Na087b9f3529140e1aa7382f28edbbd16
76 Nb8f3ad58bb334c1e8f3b9121414ad0d1 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nbabd2910e5f54ef99d2d0de846dea746 schema:name Dept. of ECE, University of Illnois at Urbana-Champaign
79 rdf:type schema:Organization
80 Nbb738edfc3994c0493ba47f70aa3700f schema:name doi
81 schema:value 10.1007/978-3-642-15555-0_11
82 rdf:type schema:PropertyValue
83 Nc0f91469beca46fea9064d502cf5a512 rdf:first Nff0b87ac3e1349c3b0e5de0049332099
84 rdf:rest rdf:nil
85 Nc9c2b0ddac744d66bc01ed5f4f6dd945 rdf:first N8fcd773861a443dfbf23f81dac15561b
86 rdf:rest N0e272a9db6bc411aa74f21df42262ba5
87 Nff0b87ac3e1349c3b0e5de0049332099 schema:familyName Paragios
88 schema:givenName Nikos
89 rdf:type schema:Person
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
94 schema:name Artificial Intelligence and Image Processing
95 rdf:type schema:DefinedTerm
96 sg:person.011374774067.03 schema:affiliation N7aed1458a6964fecad455fe95719afed
97 schema:familyName Huang
98 schema:givenName Thomas S.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374774067.03
100 rdf:type schema:Person
101 sg:person.013513202775.26 schema:affiliation Nbabd2910e5f54ef99d2d0de846dea746
102 schema:familyName Zhou
103 schema:givenName Xi
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013513202775.26
105 rdf:type schema:Person
106 sg:person.015165710332.53 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
107 schema:familyName Zhang
108 schema:givenName Tong
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015165710332.53
110 rdf:type schema:Person
111 sg:person.015365401647.88 schema:affiliation N2adee907cf974340833d59408f0b1d4b
112 schema:familyName Yu
113 schema:givenName Kai
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365401647.88
115 rdf:type schema:Person
116 sg:pub.10.1007/978-3-540-45167-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013863491
117 https://doi.org/10.1007/978-3-540-45167-9_6
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-3-540-88690-7_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009765396
120 https://doi.org/10.1007/978-3-540-88690-7_24
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11263-009-0275-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014796149
123 https://doi.org/10.1007/s11263-009-0275-4
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.cviu.2005.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784969
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/5.726791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179979
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/cvpr.2005.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095244523
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/cvpr.2005.254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095271325
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/cvpr.2006.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093880961
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/cvpr.2006.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094512911
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/cvpr.2007.383266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095559903
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/cvpr.2008.4587633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093176609
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/cvpr.2009.5206757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095180230
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/iccv.2007.4408875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095251623
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/iccv.2009.5459435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094696425
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/1273496.1273592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052861703
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1145/1282280.1282340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033635059
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
152 schema:name Department of Statistics, Rutgers University
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...