Brain Activation and Deactivation in Human Inductive Reasoning: An fMRI Study View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Peipeng Liang , Yang Mei , Xiuqin Jia , Yanhui Yang , Shengfu Lu , Ning Zhong , Kuncheng Li

ABSTRACT

In order to study the cognitive neural mechanism of human inductive reasoning, both the positive and negative activation should be combined. However, most studies only focus on the positive activation and the negative activation of inductive reasoning has not been reported. The present study will examine the two aspects simultaneously. Two experimental tasks were designed according to the magnitude of shared attributes: sharing two common attributes (2T) and sharing one common attribute (1T), and rest acted as control task. 2T and 1T tasks are both inductive reasoning tasks. 2T task contains the component of perceptual features’ integration, while 1T does not. Fourteen college students participated in this study. It was showed that, as compared to rest condition, induction activated a distributed regions including prefrontal cortex (BA 6, 9, 11, 46, 47), caudate, putamen, thalamus, etc., and these regions were related to task difficulty. This may reflect the important role the prefrontal-striatal-thalamus loop in inductive reasoning. The fMRI result also showed the significant negative activation of the right superior temporal gyrus (BA 22), the left angular gyrus (BA 39), bilateral middle frontal gyrus (BA 8, 9, 10), posterior cingulated cortex (BA 31) in inductive reasoning as compared to rest condition. These results were consistent with previous studies of default mode network. Future work were required to examine if there exist induction specific positive activation network and negative activation network, and what the relationship between the two networks. More... »

PAGES

387-398

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15314-3_37

DOI

http://dx.doi.org/10.1007/978-3-642-15314-3_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021873151


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "International WIC Institute, Beijing University of Technology, 100124, Beijing, China", 
            "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Peipeng", 
        "id": "sg:person.0722540505.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722540505.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "International WIC Institute, Beijing University of Technology, 100124, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mei", 
        "givenName": "Yang", 
        "id": "sg:person.015226233057.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015226233057.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Xiuqin", 
        "id": "sg:person.0715310133.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715310133.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Yanhui", 
        "id": "sg:person.01063243031.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063243031.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "International WIC Institute, Beijing University of Technology, 100124, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Shengfu", 
        "id": "sg:person.0741064405.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741064405.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Life Science and Informatics, Maebashi Institute of Technology, 371-0816, Maebashi-City, Japan", 
          "id": "http://www.grid.ac/institutes/grid.444244.6", 
          "name": [
            "International WIC Institute, Beijing University of Technology, 100124, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
            "Dept. of Life Science and Informatics, Maebashi Institute of Technology, 371-0816, Maebashi-City, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Ning", 
        "id": "sg:person.012247427067.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "In order to study the cognitive neural mechanism of human inductive reasoning, both the positive and negative activation should be combined. However, most studies only focus on the positive activation and the negative activation of inductive reasoning has not been reported. The present study will examine the two aspects simultaneously. Two experimental tasks were designed according to the magnitude of shared attributes: sharing two common attributes (2T) and sharing one common attribute (1T), and rest acted as control task. 2T and 1T tasks are both inductive reasoning tasks. 2T task contains the component of perceptual features\u2019 integration, while 1T does not. Fourteen college students participated in this study. It was showed that, as compared to rest condition, induction activated a distributed regions including prefrontal cortex (BA 6, 9, 11, 46, 47), caudate, putamen, thalamus, etc., and these regions were related to task difficulty. This may reflect the important role the prefrontal-striatal-thalamus loop in inductive reasoning. The fMRI result also showed the significant negative activation of the right superior temporal gyrus (BA 22), the left angular gyrus (BA 39), bilateral middle frontal gyrus (BA 8, 9, 10), posterior cingulated cortex (BA 31) in inductive reasoning as compared to rest condition. These results were consistent with previous studies of default mode network. Future work were required to examine if there exist induction specific positive activation network and negative activation network, and what the relationship between the two networks.", 
    "editor": [
      {
        "familyName": "Yao", 
        "givenName": "Yiyu", 
        "type": "Person"
      }, 
      {
        "familyName": "Sun", 
        "givenName": "Ron", 
        "type": "Person"
      }, 
      {
        "familyName": "Poggio", 
        "givenName": "Tomaso", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Jiming", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhong", 
        "givenName": "Ning", 
        "type": "Person"
      }, 
      {
        "familyName": "Huang", 
        "givenName": "Jimmy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15314-3_37", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15313-6", 
        "978-3-642-15314-3"
      ], 
      "name": "Brain Informatics", 
      "type": "Book"
    }, 
    "keywords": [
      "human inductive reasoning", 
      "inductive reasoning", 
      "negative activation", 
      "activation network", 
      "cognitive neural mechanism", 
      "inductive reasoning tasks", 
      "right superior temporal gyrus", 
      "bilateral middle frontal gyrus", 
      "left angular gyrus", 
      "superior temporal gyrus", 
      "middle frontal gyrus", 
      "default mode network", 
      "t tasks", 
      "perceptual features", 
      "fMRI results", 
      "experimental tasks", 
      "brain activation", 
      "reasoning tasks", 
      "task difficulty", 
      "fMRI study", 
      "neural mechanisms", 
      "frontal gyrus", 
      "rest condition", 
      "angular gyrus", 
      "temporal gyrus", 
      "prefrontal cortex", 
      "mode network", 
      "control task", 
      "positive activation", 
      "college students", 
      "task", 
      "gyrus", 
      "cingulated cortex", 
      "reasoning", 
      "cortex", 
      "common attributes", 
      "future work", 
      "present study", 
      "most studies", 
      "caudate", 
      "attributes", 
      "previous studies", 
      "students", 
      "difficulties", 
      "putamen", 
      "relationship", 
      "study", 
      "thalamus", 
      "aspects", 
      "network", 
      "activation", 
      "results", 
      "integration", 
      "role", 
      "important role", 
      "deactivation", 
      "features", 
      "work", 
      "conditions", 
      "components", 
      "mechanism", 
      "rest", 
      "region", 
      "order", 
      "magnitude", 
      "loop", 
      "induction"
    ], 
    "name": "Brain Activation and Deactivation in Human Inductive Reasoning: An fMRI Study", 
    "pagination": "387-398", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021873151"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15314-3_37"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15314-3_37", 
      "https://app.dimensions.ai/details/publication/pub.1021873151"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_23.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15314-3_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15314-3_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15314-3_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15314-3_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15314-3_37'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      22 PREDICATES      92 URIs      85 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15314-3_37 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N239e07b6d40e48809700974f1deaab0e
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description In order to study the cognitive neural mechanism of human inductive reasoning, both the positive and negative activation should be combined. However, most studies only focus on the positive activation and the negative activation of inductive reasoning has not been reported. The present study will examine the two aspects simultaneously. Two experimental tasks were designed according to the magnitude of shared attributes: sharing two common attributes (2T) and sharing one common attribute (1T), and rest acted as control task. 2T and 1T tasks are both inductive reasoning tasks. 2T task contains the component of perceptual features’ integration, while 1T does not. Fourteen college students participated in this study. It was showed that, as compared to rest condition, induction activated a distributed regions including prefrontal cortex (BA 6, 9, 11, 46, 47), caudate, putamen, thalamus, etc., and these regions were related to task difficulty. This may reflect the important role the prefrontal-striatal-thalamus loop in inductive reasoning. The fMRI result also showed the significant negative activation of the right superior temporal gyrus (BA 22), the left angular gyrus (BA 39), bilateral middle frontal gyrus (BA 8, 9, 10), posterior cingulated cortex (BA 31) in inductive reasoning as compared to rest condition. These results were consistent with previous studies of default mode network. Future work were required to examine if there exist induction specific positive activation network and negative activation network, and what the relationship between the two networks.
7 schema:editor N828a92175f294e0299971771abae038b
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nb2c70e74e0354a03961c29a4c84c9fc0
11 schema:keywords activation
12 activation network
13 angular gyrus
14 aspects
15 attributes
16 bilateral middle frontal gyrus
17 brain activation
18 caudate
19 cingulated cortex
20 cognitive neural mechanism
21 college students
22 common attributes
23 components
24 conditions
25 control task
26 cortex
27 deactivation
28 default mode network
29 difficulties
30 experimental tasks
31 fMRI results
32 fMRI study
33 features
34 frontal gyrus
35 future work
36 gyrus
37 human inductive reasoning
38 important role
39 induction
40 inductive reasoning
41 inductive reasoning tasks
42 integration
43 left angular gyrus
44 loop
45 magnitude
46 mechanism
47 middle frontal gyrus
48 mode network
49 most studies
50 negative activation
51 network
52 neural mechanisms
53 order
54 perceptual features
55 positive activation
56 prefrontal cortex
57 present study
58 previous studies
59 putamen
60 reasoning
61 reasoning tasks
62 region
63 relationship
64 rest
65 rest condition
66 results
67 right superior temporal gyrus
68 role
69 students
70 study
71 superior temporal gyrus
72 t tasks
73 task
74 task difficulty
75 temporal gyrus
76 thalamus
77 work
78 schema:name Brain Activation and Deactivation in Human Inductive Reasoning: An fMRI Study
79 schema:pagination 387-398
80 schema:productId N10b9bb1dec3e4423a8faaf208cdc1662
81 Ned82544d86744ac6a24f3b4a723d5a29
82 schema:publisher Neeca35e2aa414a478b75538398d466e1
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021873151
84 https://doi.org/10.1007/978-3-642-15314-3_37
85 schema:sdDatePublished 2022-10-01T06:54
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N73eb5e6b9f044c0c9b061c6b7661dc69
88 schema:url https://doi.org/10.1007/978-3-642-15314-3_37
89 sgo:license sg:explorer/license/
90 sgo:sdDataset chapters
91 rdf:type schema:Chapter
92 N0930fc64b5644827aea2be41691aae94 rdf:first sg:person.01063243031.69
93 rdf:rest N30a7b062215f4af7a6d7b67d80efa9e7
94 N10b9bb1dec3e4423a8faaf208cdc1662 schema:name dimensions_id
95 schema:value pub.1021873151
96 rdf:type schema:PropertyValue
97 N14bacc161036442f9fe2c720e0725cc0 schema:familyName Zhong
98 schema:givenName Ning
99 rdf:type schema:Person
100 N224710056b704549bf1b9fec4debfdbe schema:familyName Poggio
101 schema:givenName Tomaso
102 rdf:type schema:Person
103 N239e07b6d40e48809700974f1deaab0e rdf:first sg:person.0722540505.81
104 rdf:rest N9cf4656b6c424588906f1bbb23f41b86
105 N27ce32e3c5a242dc8c5dad2b07a0aaac schema:familyName Sun
106 schema:givenName Ron
107 rdf:type schema:Person
108 N2f00eadcef2f4877b6b478ec08a77ebb schema:familyName Yao
109 schema:givenName Yiyu
110 rdf:type schema:Person
111 N30a7b062215f4af7a6d7b67d80efa9e7 rdf:first sg:person.0741064405.61
112 rdf:rest N855b1b454d9f4627979ac80cee385ed0
113 N337758dfb2f549e5a8c2ebee3f4efee9 schema:familyName Huang
114 schema:givenName Jimmy
115 rdf:type schema:Person
116 N43bb2239a61b4a91960b19a52dc5ccbf rdf:first N337758dfb2f549e5a8c2ebee3f4efee9
117 rdf:rest rdf:nil
118 N45772685be3245ae864facea1f704c77 rdf:first sg:person.01326527402.59
119 rdf:rest rdf:nil
120 N47cf960c0da749c1bc67444f5d1e389e rdf:first N224710056b704549bf1b9fec4debfdbe
121 rdf:rest N5c09f2f3dfba46e3b4a1df7743f15586
122 N5c09f2f3dfba46e3b4a1df7743f15586 rdf:first Ndd6944bfaa6a4cd3ac989a4df985196f
123 rdf:rest N923e8fb94fb948d28507954b9b27cbe6
124 N73eb5e6b9f044c0c9b061c6b7661dc69 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 N828a92175f294e0299971771abae038b rdf:first N2f00eadcef2f4877b6b478ec08a77ebb
127 rdf:rest Nee3d5549517d482eb6f9d3180b92d97f
128 N855b1b454d9f4627979ac80cee385ed0 rdf:first sg:person.012247427067.95
129 rdf:rest N45772685be3245ae864facea1f704c77
130 N923e8fb94fb948d28507954b9b27cbe6 rdf:first N14bacc161036442f9fe2c720e0725cc0
131 rdf:rest N43bb2239a61b4a91960b19a52dc5ccbf
132 N9cf4656b6c424588906f1bbb23f41b86 rdf:first sg:person.015226233057.39
133 rdf:rest Nb86a578b676746c2957ee8ce38ec0ee4
134 Nb2c70e74e0354a03961c29a4c84c9fc0 schema:isbn 978-3-642-15313-6
135 978-3-642-15314-3
136 schema:name Brain Informatics
137 rdf:type schema:Book
138 Nb86a578b676746c2957ee8ce38ec0ee4 rdf:first sg:person.0715310133.08
139 rdf:rest N0930fc64b5644827aea2be41691aae94
140 Ndd6944bfaa6a4cd3ac989a4df985196f schema:familyName Liu
141 schema:givenName Jiming
142 rdf:type schema:Person
143 Ned82544d86744ac6a24f3b4a723d5a29 schema:name doi
144 schema:value 10.1007/978-3-642-15314-3_37
145 rdf:type schema:PropertyValue
146 Nee3d5549517d482eb6f9d3180b92d97f rdf:first N27ce32e3c5a242dc8c5dad2b07a0aaac
147 rdf:rest N47cf960c0da749c1bc67444f5d1e389e
148 Neeca35e2aa414a478b75538398d466e1 schema:name Springer Nature
149 rdf:type schema:Organisation
150 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
151 schema:name Psychology and Cognitive Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
154 schema:name Psychology
155 rdf:type schema:DefinedTerm
156 sg:person.01063243031.69 schema:affiliation grid-institutes:None
157 schema:familyName Yang
158 schema:givenName Yanhui
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063243031.69
160 rdf:type schema:Person
161 sg:person.012247427067.95 schema:affiliation grid-institutes:grid.444244.6
162 schema:familyName Zhong
163 schema:givenName Ning
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95
165 rdf:type schema:Person
166 sg:person.01326527402.59 schema:affiliation grid-institutes:None
167 schema:familyName Li
168 schema:givenName Kuncheng
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
170 rdf:type schema:Person
171 sg:person.015226233057.39 schema:affiliation grid-institutes:None
172 schema:familyName Mei
173 schema:givenName Yang
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015226233057.39
175 rdf:type schema:Person
176 sg:person.0715310133.08 schema:affiliation grid-institutes:None
177 schema:familyName Jia
178 schema:givenName Xiuqin
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715310133.08
180 rdf:type schema:Person
181 sg:person.0722540505.81 schema:affiliation grid-institutes:None
182 schema:familyName Liang
183 schema:givenName Peipeng
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722540505.81
185 rdf:type schema:Person
186 sg:person.0741064405.61 schema:affiliation grid-institutes:None
187 schema:familyName Lu
188 schema:givenName Shengfu
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741064405.61
190 rdf:type schema:Person
191 grid-institutes:None schema:alternateName Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China
192 schema:name Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China
193 International WIC Institute, Beijing University of Technology, 100124, Beijing, China
194 Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
195 rdf:type schema:Organization
196 grid-institutes:grid.444244.6 schema:alternateName Dept. of Life Science and Informatics, Maebashi Institute of Technology, 371-0816, Maebashi-City, Japan
197 schema:name Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China
198 Dept. of Life Science and Informatics, Maebashi Institute of Technology, 371-0816, Maebashi-City, Japan
199 International WIC Institute, Beijing University of Technology, 100124, Beijing, China
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...