Brain Activation and Deactivation in Human Inductive Reasoning: An fMRI Study View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Peipeng Liang , Yang Mei , Xiuqin Jia , Yanhui Yang , Shengfu Lu , Ning Zhong , Kuncheng Li

ABSTRACT

In order to study the cognitive neural mechanism of human inductive reasoning, both the positive and negative activation should be combined. However, most studies only focus on the positive activation and the negative activation of inductive reasoning has not been reported. The present study will examine the two aspects simultaneously. Two experimental tasks were designed according to the magnitude of shared attributes: sharing two common attributes (2T) and sharing one common attribute (1T), and rest acted as control task. 2T and 1T tasks are both inductive reasoning tasks. 2T task contains the component of perceptual features’ integration, while 1T does not. Fourteen college students participated in this study. It was showed that, as compared to rest condition, induction activated a distributed regions including prefrontal cortex (BA 6, 9, 11, 46, 47), caudate, putamen, thalamus, etc., and these regions were related to task difficulty. This may reflect the important role the prefrontal-striatal-thalamus loop in inductive reasoning. The fMRI result also showed the significant negative activation of the right superior temporal gyrus (BA 22), the left angular gyrus (BA 39), bilateral middle frontal gyrus (BA 8, 9, 10), posterior cingulated cortex (BA 31) in inductive reasoning as compared to rest condition. These results were consistent with previous studies of default mode network. Future work were required to examine if there exist induction specific positive activation network and negative activation network, and what the relationship between the two networks. More... »

PAGES

387-398

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15314-3_37

DOI

http://dx.doi.org/10.1007/978-3-642-15314-3_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021873151


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "International WIC Institute, Beijing University of Technology, 100124, Beijing, China", 
            "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Peipeng", 
        "id": "sg:person.0722540505.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722540505.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "International WIC Institute, Beijing University of Technology, 100124, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mei", 
        "givenName": "Yang", 
        "id": "sg:person.015226233057.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015226233057.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Xiuqin", 
        "id": "sg:person.0715310133.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715310133.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Yanhui", 
        "id": "sg:person.01063243031.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063243031.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "International WIC Institute, Beijing University of Technology, 100124, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Shengfu", 
        "id": "sg:person.0741064405.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741064405.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Life Science and Informatics, Maebashi Institute of Technology, 371-0816, Maebashi-City, Japan", 
          "id": "http://www.grid.ac/institutes/grid.444244.6", 
          "name": [
            "International WIC Institute, Beijing University of Technology, 100124, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
            "Dept. of Life Science and Informatics, Maebashi Institute of Technology, 371-0816, Maebashi-City, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Ning", 
        "id": "sg:person.012247427067.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "In order to study the cognitive neural mechanism of human inductive reasoning, both the positive and negative activation should be combined. However, most studies only focus on the positive activation and the negative activation of inductive reasoning has not been reported. The present study will examine the two aspects simultaneously. Two experimental tasks were designed according to the magnitude of shared attributes: sharing two common attributes (2T) and sharing one common attribute (1T), and rest acted as control task. 2T and 1T tasks are both inductive reasoning tasks. 2T task contains the component of perceptual features\u2019 integration, while 1T does not. Fourteen college students participated in this study. It was showed that, as compared to rest condition, induction activated a distributed regions including prefrontal cortex (BA 6, 9, 11, 46, 47), caudate, putamen, thalamus, etc., and these regions were related to task difficulty. This may reflect the important role the prefrontal-striatal-thalamus loop in inductive reasoning. The fMRI result also showed the significant negative activation of the right superior temporal gyrus (BA 22), the left angular gyrus (BA 39), bilateral middle frontal gyrus (BA 8, 9, 10), posterior cingulated cortex (BA 31) in inductive reasoning as compared to rest condition. These results were consistent with previous studies of default mode network. Future work were required to examine if there exist induction specific positive activation network and negative activation network, and what the relationship between the two networks.", 
    "editor": [
      {
        "familyName": "Yao", 
        "givenName": "Yiyu", 
        "type": "Person"
      }, 
      {
        "familyName": "Sun", 
        "givenName": "Ron", 
        "type": "Person"
      }, 
      {
        "familyName": "Poggio", 
        "givenName": "Tomaso", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Jiming", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhong", 
        "givenName": "Ning", 
        "type": "Person"
      }, 
      {
        "familyName": "Huang", 
        "givenName": "Jimmy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15314-3_37", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15313-6", 
        "978-3-642-15314-3"
      ], 
      "name": "Brain Informatics", 
      "type": "Book"
    }, 
    "keywords": [
      "human inductive reasoning", 
      "inductive reasoning", 
      "negative activation", 
      "activation network", 
      "cognitive neural mechanism", 
      "inductive reasoning tasks", 
      "right superior temporal gyrus", 
      "bilateral middle frontal gyrus", 
      "left angular gyrus", 
      "superior temporal gyrus", 
      "middle frontal gyrus", 
      "default mode network", 
      "t tasks", 
      "perceptual features", 
      "fMRI results", 
      "experimental tasks", 
      "brain activation", 
      "reasoning tasks", 
      "task difficulty", 
      "fMRI study", 
      "neural mechanisms", 
      "frontal gyrus", 
      "rest condition", 
      "angular gyrus", 
      "temporal gyrus", 
      "prefrontal cortex", 
      "mode network", 
      "control task", 
      "positive activation", 
      "college students", 
      "task", 
      "gyrus", 
      "cingulated cortex", 
      "reasoning", 
      "cortex", 
      "common attributes", 
      "future work", 
      "present study", 
      "most studies", 
      "caudate", 
      "attributes", 
      "previous studies", 
      "students", 
      "difficulties", 
      "putamen", 
      "relationship", 
      "study", 
      "thalamus", 
      "aspects", 
      "network", 
      "activation", 
      "results", 
      "integration", 
      "role", 
      "important role", 
      "deactivation", 
      "features", 
      "work", 
      "conditions", 
      "components", 
      "mechanism", 
      "rest", 
      "region", 
      "order", 
      "magnitude", 
      "loop", 
      "induction"
    ], 
    "name": "Brain Activation and Deactivation in Human Inductive Reasoning: An fMRI Study", 
    "pagination": "387-398", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021873151"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15314-3_37"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15314-3_37", 
      "https://app.dimensions.ai/details/publication/pub.1021873151"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_38.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-15314-3_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15314-3_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15314-3_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15314-3_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15314-3_37'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      22 PREDICATES      92 URIs      85 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15314-3_37 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Ne4bfe00d3b8b48f2ba6bd3794364f56a
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description In order to study the cognitive neural mechanism of human inductive reasoning, both the positive and negative activation should be combined. However, most studies only focus on the positive activation and the negative activation of inductive reasoning has not been reported. The present study will examine the two aspects simultaneously. Two experimental tasks were designed according to the magnitude of shared attributes: sharing two common attributes (2T) and sharing one common attribute (1T), and rest acted as control task. 2T and 1T tasks are both inductive reasoning tasks. 2T task contains the component of perceptual features’ integration, while 1T does not. Fourteen college students participated in this study. It was showed that, as compared to rest condition, induction activated a distributed regions including prefrontal cortex (BA 6, 9, 11, 46, 47), caudate, putamen, thalamus, etc., and these regions were related to task difficulty. This may reflect the important role the prefrontal-striatal-thalamus loop in inductive reasoning. The fMRI result also showed the significant negative activation of the right superior temporal gyrus (BA 22), the left angular gyrus (BA 39), bilateral middle frontal gyrus (BA 8, 9, 10), posterior cingulated cortex (BA 31) in inductive reasoning as compared to rest condition. These results were consistent with previous studies of default mode network. Future work were required to examine if there exist induction specific positive activation network and negative activation network, and what the relationship between the two networks.
7 schema:editor Nbfdb43e96d364d31b64a5a7a0234a13b
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne66b61fe19964e22a749ad7cde54ad2e
11 schema:keywords activation
12 activation network
13 angular gyrus
14 aspects
15 attributes
16 bilateral middle frontal gyrus
17 brain activation
18 caudate
19 cingulated cortex
20 cognitive neural mechanism
21 college students
22 common attributes
23 components
24 conditions
25 control task
26 cortex
27 deactivation
28 default mode network
29 difficulties
30 experimental tasks
31 fMRI results
32 fMRI study
33 features
34 frontal gyrus
35 future work
36 gyrus
37 human inductive reasoning
38 important role
39 induction
40 inductive reasoning
41 inductive reasoning tasks
42 integration
43 left angular gyrus
44 loop
45 magnitude
46 mechanism
47 middle frontal gyrus
48 mode network
49 most studies
50 negative activation
51 network
52 neural mechanisms
53 order
54 perceptual features
55 positive activation
56 prefrontal cortex
57 present study
58 previous studies
59 putamen
60 reasoning
61 reasoning tasks
62 region
63 relationship
64 rest
65 rest condition
66 results
67 right superior temporal gyrus
68 role
69 students
70 study
71 superior temporal gyrus
72 t tasks
73 task
74 task difficulty
75 temporal gyrus
76 thalamus
77 work
78 schema:name Brain Activation and Deactivation in Human Inductive Reasoning: An fMRI Study
79 schema:pagination 387-398
80 schema:productId N23b26ca50082465fa27208c4b56e6b70
81 Ncd46860d909b49fa940c34376bfea899
82 schema:publisher Na3bd65e2e7c14f4caf9cbb17d4a7a3a3
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021873151
84 https://doi.org/10.1007/978-3-642-15314-3_37
85 schema:sdDatePublished 2022-12-01T06:52
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N36254eaaeda440fcb17198ddd0540631
88 schema:url https://doi.org/10.1007/978-3-642-15314-3_37
89 sgo:license sg:explorer/license/
90 sgo:sdDataset chapters
91 rdf:type schema:Chapter
92 N02d4df96b74a4073a2d833c5d99f657d schema:familyName Huang
93 schema:givenName Jimmy
94 rdf:type schema:Person
95 N063c95e914e04c91a36895246fb508b3 rdf:first Ncf9af16a4ca5438c917b62c9e07ec31c
96 rdf:rest Ne22a2411b40e43afb655667379a0d18f
97 N14b667778c9e41abac038c8ba120cebe rdf:first N02d4df96b74a4073a2d833c5d99f657d
98 rdf:rest rdf:nil
99 N23b26ca50082465fa27208c4b56e6b70 schema:name dimensions_id
100 schema:value pub.1021873151
101 rdf:type schema:PropertyValue
102 N36254eaaeda440fcb17198ddd0540631 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N5fbb3e6177014638b9610affda283095 rdf:first sg:person.0741064405.61
105 rdf:rest N648b05eb840a405c968d7f2eb4b8375d
106 N648b05eb840a405c968d7f2eb4b8375d rdf:first sg:person.012247427067.95
107 rdf:rest Nc124c2fafd044e53997ba0ab4fb450f0
108 N6b3149d78f714522ac3d6de66995ec21 rdf:first sg:person.01063243031.69
109 rdf:rest N5fbb3e6177014638b9610affda283095
110 N6ebb4c5481784fe1a7ef7c7cdb036203 rdf:first N9d2e05600d034bfaa7eca8403264ee0e
111 rdf:rest N14b667778c9e41abac038c8ba120cebe
112 N79f4b75b41814510b5f412e3f053beca rdf:first N8e0da40510204e49be30e4548ee47cce
113 rdf:rest N063c95e914e04c91a36895246fb508b3
114 N8137cc570ac5453d93b96f83f08aa98d schema:familyName Yao
115 schema:givenName Yiyu
116 rdf:type schema:Person
117 N8d3159bb2655426e8579cb67dc30f6f1 rdf:first sg:person.0715310133.08
118 rdf:rest N6b3149d78f714522ac3d6de66995ec21
119 N8e0da40510204e49be30e4548ee47cce schema:familyName Sun
120 schema:givenName Ron
121 rdf:type schema:Person
122 N93fd1b2979d64e52ae9853cc70510d6d schema:familyName Liu
123 schema:givenName Jiming
124 rdf:type schema:Person
125 N9d2e05600d034bfaa7eca8403264ee0e schema:familyName Zhong
126 schema:givenName Ning
127 rdf:type schema:Person
128 Na3bd65e2e7c14f4caf9cbb17d4a7a3a3 schema:name Springer Nature
129 rdf:type schema:Organisation
130 Nb9526934c70d49a593cbd7acc14dec40 rdf:first sg:person.015226233057.39
131 rdf:rest N8d3159bb2655426e8579cb67dc30f6f1
132 Nbfdb43e96d364d31b64a5a7a0234a13b rdf:first N8137cc570ac5453d93b96f83f08aa98d
133 rdf:rest N79f4b75b41814510b5f412e3f053beca
134 Nc124c2fafd044e53997ba0ab4fb450f0 rdf:first sg:person.01326527402.59
135 rdf:rest rdf:nil
136 Ncd46860d909b49fa940c34376bfea899 schema:name doi
137 schema:value 10.1007/978-3-642-15314-3_37
138 rdf:type schema:PropertyValue
139 Ncf9af16a4ca5438c917b62c9e07ec31c schema:familyName Poggio
140 schema:givenName Tomaso
141 rdf:type schema:Person
142 Ne22a2411b40e43afb655667379a0d18f rdf:first N93fd1b2979d64e52ae9853cc70510d6d
143 rdf:rest N6ebb4c5481784fe1a7ef7c7cdb036203
144 Ne4bfe00d3b8b48f2ba6bd3794364f56a rdf:first sg:person.0722540505.81
145 rdf:rest Nb9526934c70d49a593cbd7acc14dec40
146 Ne66b61fe19964e22a749ad7cde54ad2e schema:isbn 978-3-642-15313-6
147 978-3-642-15314-3
148 schema:name Brain Informatics
149 rdf:type schema:Book
150 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
151 schema:name Psychology and Cognitive Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
154 schema:name Psychology
155 rdf:type schema:DefinedTerm
156 sg:person.01063243031.69 schema:affiliation grid-institutes:None
157 schema:familyName Yang
158 schema:givenName Yanhui
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063243031.69
160 rdf:type schema:Person
161 sg:person.012247427067.95 schema:affiliation grid-institutes:grid.444244.6
162 schema:familyName Zhong
163 schema:givenName Ning
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95
165 rdf:type schema:Person
166 sg:person.01326527402.59 schema:affiliation grid-institutes:None
167 schema:familyName Li
168 schema:givenName Kuncheng
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
170 rdf:type schema:Person
171 sg:person.015226233057.39 schema:affiliation grid-institutes:None
172 schema:familyName Mei
173 schema:givenName Yang
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015226233057.39
175 rdf:type schema:Person
176 sg:person.0715310133.08 schema:affiliation grid-institutes:None
177 schema:familyName Jia
178 schema:givenName Xiuqin
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715310133.08
180 rdf:type schema:Person
181 sg:person.0722540505.81 schema:affiliation grid-institutes:None
182 schema:familyName Liang
183 schema:givenName Peipeng
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722540505.81
185 rdf:type schema:Person
186 sg:person.0741064405.61 schema:affiliation grid-institutes:None
187 schema:familyName Lu
188 schema:givenName Shengfu
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741064405.61
190 rdf:type schema:Person
191 grid-institutes:None schema:alternateName Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China
192 schema:name Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China
193 International WIC Institute, Beijing University of Technology, 100124, Beijing, China
194 Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
195 rdf:type schema:Organization
196 grid-institutes:grid.444244.6 schema:alternateName Dept. of Life Science and Informatics, Maebashi Institute of Technology, 371-0816, Maebashi-City, Japan
197 schema:name Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China
198 Dept. of Life Science and Informatics, Maebashi Institute of Technology, 371-0816, Maebashi-City, Japan
199 International WIC Institute, Beijing University of Technology, 100124, Beijing, China
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...