Path Integration Working Memory for Multi Tasks Dead Reckoning and Visual Navigation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Cyril Hasson , Philippe Gaussier

ABSTRACT

Biologically inspired models for navigation use mechanisms like path integration or sensori-motor learning. This paper describes the use of a proprioceptive working memory to give path integration the potential to store several goals. Then we coupled the path integration working memory to place cell sensori-motor learning to test the potential autonomy this gives to the robot. This navigation architecture intends to combine the benefits of both strategies in order to overcome their drawbacks. The robot uses a low level motivational system based on a simulated physiology. Experimental evaluation is done with a robot in a real environment performing a multi goal navigation task. More... »

PAGES

380-389

References to SciGraph publications

Book

TITLE

From Animals to Animats 11

ISBN

978-3-642-15192-7
978-3-642-15193-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-15193-4_36

DOI

http://dx.doi.org/10.1007/978-3-642-15193-4_36

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036542786


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "ETIS laboratory UMR 8051, Universit\u00e9 de Cergy-Pontoise, CNRS, ENSEA, F-95000, Cergy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasson", 
        "givenName": "Cyril", 
        "id": "sg:person.014201565363.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014201565363.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "ETIS laboratory UMR 8051, Universit\u00e9 de Cergy-Pontoise, CNRS, ENSEA, F-95000, Cergy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaussier", 
        "givenName": "Philippe", 
        "id": "sg:person.01041272554.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s004220000171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010284608", 
          "https://doi.org/10.1007/s004220000171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-1063(2000)10:1<1::aid-hipo1>3.0.co;2-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010484685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00450672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020104276", 
          "https://doi.org/10.1007/bf00450672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00450672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020104276", 
          "https://doi.org/10.1007/bf00450672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-8890(95)00052-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029057226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-8890(99)00070-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030554231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2006.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040235726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jeb.01772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045541093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0926-6410(02)00062-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048090989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s021963520700160x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063002701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082866162", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812792747_0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088732282"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Biologically inspired models for navigation use mechanisms like path integration or sensori-motor learning. This paper describes the use of a proprioceptive working memory to give path integration the potential to store several goals. Then we coupled the path integration working memory to place cell sensori-motor learning to test the potential autonomy this gives to the robot. This navigation architecture intends to combine the benefits of both strategies in order to overcome their drawbacks. The robot uses a low level motivational system based on a simulated physiology. Experimental evaluation is done with a robot in a real environment performing a multi goal navigation task.", 
    "editor": [
      {
        "familyName": "Doncieux", 
        "givenName": "St\u00e9phane", 
        "type": "Person"
      }, 
      {
        "familyName": "Girard", 
        "givenName": "Beno\u00eet", 
        "type": "Person"
      }, 
      {
        "familyName": "Guillot", 
        "givenName": "Agn\u00e8s", 
        "type": "Person"
      }, 
      {
        "familyName": "Hallam", 
        "givenName": "John", 
        "type": "Person"
      }, 
      {
        "familyName": "Meyer", 
        "givenName": "Jean-Arcady", 
        "type": "Person"
      }, 
      {
        "familyName": "Mouret", 
        "givenName": "Jean-Baptiste", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-15193-4_36", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-15192-7", 
        "978-3-642-15193-4"
      ], 
      "name": "From Animals to Animats 11", 
      "type": "Book"
    }, 
    "name": "Path Integration Working Memory for Multi Tasks Dead Reckoning and Visual Navigation", 
    "pagination": "380-389", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036542786"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-15193-4_36"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ae1320a57cbc07d6d042dfb2dd72b2a89e44c2ed3b04766d1f22220d2d0bc107"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-15193-4_36", 
      "https://app.dimensions.ai/details/publication/pub.1036542786"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70058_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-15193-4_36"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15193-4_36'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15193-4_36'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15193-4_36'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-15193-4_36'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-15193-4_36 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfa5f569496c341b78dcc46aa4da575ae
4 schema:citation sg:pub.10.1007/bf00450672
5 sg:pub.10.1007/s004220000171
6 https://app.dimensions.ai/details/publication/pub.1082866162
7 https://doi.org/10.1002/(sici)1098-1063(2000)10:1<1::aid-hipo1>3.0.co;2-1
8 https://doi.org/10.1016/0921-8890(95)00052-6
9 https://doi.org/10.1016/j.cub.2006.09.027
10 https://doi.org/10.1016/s0921-8890(99)00070-6
11 https://doi.org/10.1016/s0926-6410(02)00062-9
12 https://doi.org/10.1142/9789812792747_0004
13 https://doi.org/10.1142/s021963520700160x
14 https://doi.org/10.1242/jeb.01772
15 schema:datePublished 2010
16 schema:datePublishedReg 2010-01-01
17 schema:description Biologically inspired models for navigation use mechanisms like path integration or sensori-motor learning. This paper describes the use of a proprioceptive working memory to give path integration the potential to store several goals. Then we coupled the path integration working memory to place cell sensori-motor learning to test the potential autonomy this gives to the robot. This navigation architecture intends to combine the benefits of both strategies in order to overcome their drawbacks. The robot uses a low level motivational system based on a simulated physiology. Experimental evaluation is done with a robot in a real environment performing a multi goal navigation task.
18 schema:editor Nadde204da1d3483f85bec1c44bf2e6c7
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf Ndb5dfe30bc764b6b943d08cd233c0b2e
23 schema:name Path Integration Working Memory for Multi Tasks Dead Reckoning and Visual Navigation
24 schema:pagination 380-389
25 schema:productId N774009412cd34aca9220a48b2ed54d2b
26 Nc2ddf5d5e10a41f1ac51c97658476711
27 Nf84e248c854e40ffb1a04c51abf92ae8
28 schema:publisher N18faad2819554f8d9e98162eae1b725d
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036542786
30 https://doi.org/10.1007/978-3-642-15193-4_36
31 schema:sdDatePublished 2019-04-16T08:26
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nf3e6a25ee6e648a0b880ef3250d9f6a3
34 schema:url https://link.springer.com/10.1007%2F978-3-642-15193-4_36
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N0316f32f770d4aa3918529d5a6cd3f64 rdf:first N5944ce39f60d476d80c926d3238ad158
39 rdf:rest Ne66ecb092cb8445aa0a461c9374ee5c4
40 N0e3e24cb8eec42f6886608b42db7e1fc rdf:first N67719b6bb4024ca38f417a50dd01d327
41 rdf:rest rdf:nil
42 N18faad2819554f8d9e98162eae1b725d schema:location Berlin, Heidelberg
43 schema:name Springer Berlin Heidelberg
44 rdf:type schema:Organisation
45 N2a8e553cd8c64845b828edb56e489f9c schema:familyName Guillot
46 schema:givenName Agnès
47 rdf:type schema:Person
48 N5944ce39f60d476d80c926d3238ad158 schema:familyName Girard
49 schema:givenName Benoît
50 rdf:type schema:Person
51 N5f890cd3ef554757a4b3329dae162406 rdf:first Nb247f0029e5d4dfcbb916832b9fdc96e
52 rdf:rest Ncb59eaa0c5ff4cbbbd6baa5832f395d0
53 N67719b6bb4024ca38f417a50dd01d327 schema:familyName Mouret
54 schema:givenName Jean-Baptiste
55 rdf:type schema:Person
56 N774009412cd34aca9220a48b2ed54d2b schema:name dimensions_id
57 schema:value pub.1036542786
58 rdf:type schema:PropertyValue
59 Nadde204da1d3483f85bec1c44bf2e6c7 rdf:first Nf1cf260c2dc84c818c6a6cce1514213a
60 rdf:rest N0316f32f770d4aa3918529d5a6cd3f64
61 Nb247f0029e5d4dfcbb916832b9fdc96e schema:familyName Hallam
62 schema:givenName John
63 rdf:type schema:Person
64 Nc2ddf5d5e10a41f1ac51c97658476711 schema:name doi
65 schema:value 10.1007/978-3-642-15193-4_36
66 rdf:type schema:PropertyValue
67 Ncb59eaa0c5ff4cbbbd6baa5832f395d0 rdf:first Nf1e464bdb19e4185b5e1395d61d816f2
68 rdf:rest N0e3e24cb8eec42f6886608b42db7e1fc
69 Ndb5dfe30bc764b6b943d08cd233c0b2e schema:isbn 978-3-642-15192-7
70 978-3-642-15193-4
71 schema:name From Animals to Animats 11
72 rdf:type schema:Book
73 Ne66ecb092cb8445aa0a461c9374ee5c4 rdf:first N2a8e553cd8c64845b828edb56e489f9c
74 rdf:rest N5f890cd3ef554757a4b3329dae162406
75 Ne82d70f4eb694af8a2710cd510fa2a93 rdf:first sg:person.01041272554.05
76 rdf:rest rdf:nil
77 Nf1cf260c2dc84c818c6a6cce1514213a schema:familyName Doncieux
78 schema:givenName Stéphane
79 rdf:type schema:Person
80 Nf1e464bdb19e4185b5e1395d61d816f2 schema:familyName Meyer
81 schema:givenName Jean-Arcady
82 rdf:type schema:Person
83 Nf3e6a25ee6e648a0b880ef3250d9f6a3 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nf84e248c854e40ffb1a04c51abf92ae8 schema:name readcube_id
86 schema:value ae1320a57cbc07d6d042dfb2dd72b2a89e44c2ed3b04766d1f22220d2d0bc107
87 rdf:type schema:PropertyValue
88 Nfa5f569496c341b78dcc46aa4da575ae rdf:first sg:person.014201565363.51
89 rdf:rest Ne82d70f4eb694af8a2710cd510fa2a93
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
94 schema:name Artificial Intelligence and Image Processing
95 rdf:type schema:DefinedTerm
96 sg:person.01041272554.05 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
97 schema:familyName Gaussier
98 schema:givenName Philippe
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05
100 rdf:type schema:Person
101 sg:person.014201565363.51 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
102 schema:familyName Hasson
103 schema:givenName Cyril
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014201565363.51
105 rdf:type schema:Person
106 sg:pub.10.1007/bf00450672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020104276
107 https://doi.org/10.1007/bf00450672
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s004220000171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010284608
110 https://doi.org/10.1007/s004220000171
111 rdf:type schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1082866162 schema:CreativeWork
113 https://doi.org/10.1002/(sici)1098-1063(2000)10:1<1::aid-hipo1>3.0.co;2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010484685
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0921-8890(95)00052-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029057226
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.cub.2006.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040235726
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0921-8890(99)00070-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030554231
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0926-6410(02)00062-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048090989
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1142/9789812792747_0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088732282
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1142/s021963520700160x schema:sameAs https://app.dimensions.ai/details/publication/pub.1063002701
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1242/jeb.01772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045541093
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
130 schema:name ETIS laboratory UMR 8051, Université de Cergy-Pontoise, CNRS, ENSEA, F-95000, Cergy Cedex, France
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...