Ontology type: schema:Chapter Open Access: True
2010
AUTHORSNesli Erdogmus , Jean-Luc Dugelay
ABSTRACTEye features are one of the most important clues for many computer vision applications. In this paper, an efficient method to automatically extract eye features is presented. The extraction is highly based on the usage of the common knowledge about face and eye structure. With the assumption of frontal face images, firstly coarse eye regions are extracted by removing skin pixels in the upper part of the face. Then, iris circle position and radius are detected by using Hough transform in a coarse-to-fine fashion. In the final step, edges created by upper and lower eyelids are detected and polynomials are fitted to those edges so that their intersection points are labeled as eye corners. The algorithm is experimented on the Bosphorus database and the obtained results demonstrate that it can locate eye features very accurately. The strength of the proposed method stems from its reproducibility due to the utilization of simple and efficient image processing methods while achieving remarkable results without any need of training. More... »
PAGES549-558
Structural, Syntactic, and Statistical Pattern Recognition
ISBN
978-3-642-14979-5
978-3-642-14980-1
http://scigraph.springernature.com/pub.10.1007/978-3-642-14980-1_54
DOIhttp://dx.doi.org/10.1007/978-3-642-14980-1_54
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026216629
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Eurecom, Multimedia Communications Department, 2229 Routes des Cr\u00eates, 06904, Sophia Antipolis, France",
"id": "http://www.grid.ac/institutes/grid.28848.3e",
"name": [
"Eurecom, Multimedia Communications Department, 2229 Routes des Cr\u00eates, 06904, Sophia Antipolis, France"
],
"type": "Organization"
},
"familyName": "Erdogmus",
"givenName": "Nesli",
"id": "sg:person.013122633325.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013122633325.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Eurecom, Multimedia Communications Department, 2229 Routes des Cr\u00eates, 06904, Sophia Antipolis, France",
"id": "http://www.grid.ac/institutes/grid.28848.3e",
"name": [
"Eurecom, Multimedia Communications Department, 2229 Routes des Cr\u00eates, 06904, Sophia Antipolis, France"
],
"type": "Organization"
},
"familyName": "Dugelay",
"givenName": "Jean-Luc",
"id": "sg:person.015053427343.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37"
],
"type": "Person"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "Eye features are one of the most important clues for many computer vision applications. In this paper, an efficient method to automatically extract eye features is presented. The extraction is highly based on the usage of the common knowledge about face and eye structure. With the assumption of frontal face images, firstly coarse eye regions are extracted by removing skin pixels in the upper part of the face. Then, iris circle position and radius are detected by using Hough transform in a coarse-to-fine fashion. In the final step, edges created by upper and lower eyelids are detected and polynomials are fitted to those edges so that their intersection points are labeled as eye corners. The algorithm is experimented on the Bosphorus database and the obtained results demonstrate that it can locate eye features very accurately. The strength of the proposed method stems from its reproducibility due to the utilization of simple and efficient image processing methods while achieving remarkable results without any need of training.",
"editor": [
{
"familyName": "Hancock",
"givenName": "Edwin R.",
"type": "Person"
},
{
"familyName": "Wilson",
"givenName": "Richard C.",
"type": "Person"
},
{
"familyName": "Windeatt",
"givenName": "Terry",
"type": "Person"
},
{
"familyName": "Ulusoy",
"givenName": "Ilkay",
"type": "Person"
},
{
"familyName": "Escolano",
"givenName": "Francisco",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-14980-1_54",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-14979-5",
"978-3-642-14980-1"
],
"name": "Structural, Syntactic, and Statistical Pattern Recognition",
"type": "Book"
},
"keywords": [
"eye features",
"computer vision applications",
"efficient image processing method",
"frontal face images",
"image processing methods",
"vision applications",
"Bosphorus database",
"eye corners",
"face images",
"fine fashion",
"skin pixels",
"Hough transform",
"Efficient Iris",
"need of training",
"processing methods",
"eye region",
"extraction method",
"remarkable results",
"efficient method",
"circle position",
"algorithm",
"features",
"common knowledge",
"pixels",
"intersection points",
"images",
"usage",
"method",
"database",
"edge",
"iris",
"extraction",
"applications",
"final step",
"transform",
"training",
"face",
"utilization",
"knowledge",
"step",
"need",
"results",
"fashion",
"eye structures",
"point",
"polynomials",
"assumption",
"part",
"corner",
"position",
"important clues",
"structure",
"clues",
"reproducibility",
"region",
"strength",
"eyelid",
"radius",
"lower eyelid",
"upper part",
"paper"
],
"name": "An Efficient Iris and Eye Corners Extraction Method",
"pagination": "549-558",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026216629"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-14980-1_54"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-14980-1_54",
"https://app.dimensions.ai/details/publication/pub.1026216629"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:46",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_342.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-14980-1_54"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14980-1_54'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14980-1_54'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14980-1_54'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14980-1_54'
This table displays all metadata directly associated to this object as RDF triples.
148 TRIPLES
23 PREDICATES
87 URIs
80 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-14980-1_54 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Nb3964fb59da84102a6f0e4686f377ac3 |
4 | ″ | schema:datePublished | 2010 |
5 | ″ | schema:datePublishedReg | 2010-01-01 |
6 | ″ | schema:description | Eye features are one of the most important clues for many computer vision applications. In this paper, an efficient method to automatically extract eye features is presented. The extraction is highly based on the usage of the common knowledge about face and eye structure. With the assumption of frontal face images, firstly coarse eye regions are extracted by removing skin pixels in the upper part of the face. Then, iris circle position and radius are detected by using Hough transform in a coarse-to-fine fashion. In the final step, edges created by upper and lower eyelids are detected and polynomials are fitted to those edges so that their intersection points are labeled as eye corners. The algorithm is experimented on the Bosphorus database and the obtained results demonstrate that it can locate eye features very accurately. The strength of the proposed method stems from its reproducibility due to the utilization of simple and efficient image processing methods while achieving remarkable results without any need of training. |
7 | ″ | schema:editor | Nb0a043308a8a497699780699696640aa |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Ncf92e3bf880441068495dc67ab344bed |
12 | ″ | schema:keywords | Bosphorus database |
13 | ″ | ″ | Efficient Iris |
14 | ″ | ″ | Hough transform |
15 | ″ | ″ | algorithm |
16 | ″ | ″ | applications |
17 | ″ | ″ | assumption |
18 | ″ | ″ | circle position |
19 | ″ | ″ | clues |
20 | ″ | ″ | common knowledge |
21 | ″ | ″ | computer vision applications |
22 | ″ | ″ | corner |
23 | ″ | ″ | database |
24 | ″ | ″ | edge |
25 | ″ | ″ | efficient image processing method |
26 | ″ | ″ | efficient method |
27 | ″ | ″ | extraction |
28 | ″ | ″ | extraction method |
29 | ″ | ″ | eye corners |
30 | ″ | ″ | eye features |
31 | ″ | ″ | eye region |
32 | ″ | ″ | eye structures |
33 | ″ | ″ | eyelid |
34 | ″ | ″ | face |
35 | ″ | ″ | face images |
36 | ″ | ″ | fashion |
37 | ″ | ″ | features |
38 | ″ | ″ | final step |
39 | ″ | ″ | fine fashion |
40 | ″ | ″ | frontal face images |
41 | ″ | ″ | image processing methods |
42 | ″ | ″ | images |
43 | ″ | ″ | important clues |
44 | ″ | ″ | intersection points |
45 | ″ | ″ | iris |
46 | ″ | ″ | knowledge |
47 | ″ | ″ | lower eyelid |
48 | ″ | ″ | method |
49 | ″ | ″ | need |
50 | ″ | ″ | need of training |
51 | ″ | ″ | paper |
52 | ″ | ″ | part |
53 | ″ | ″ | pixels |
54 | ″ | ″ | point |
55 | ″ | ″ | polynomials |
56 | ″ | ″ | position |
57 | ″ | ″ | processing methods |
58 | ″ | ″ | radius |
59 | ″ | ″ | region |
60 | ″ | ″ | remarkable results |
61 | ″ | ″ | reproducibility |
62 | ″ | ″ | results |
63 | ″ | ″ | skin pixels |
64 | ″ | ″ | step |
65 | ″ | ″ | strength |
66 | ″ | ″ | structure |
67 | ″ | ″ | training |
68 | ″ | ″ | transform |
69 | ″ | ″ | upper part |
70 | ″ | ″ | usage |
71 | ″ | ″ | utilization |
72 | ″ | ″ | vision applications |
73 | ″ | schema:name | An Efficient Iris and Eye Corners Extraction Method |
74 | ″ | schema:pagination | 549-558 |
75 | ″ | schema:productId | N886a6b3bac364362aa9f5a6f337b2b7b |
76 | ″ | ″ | Neacb6ad1e7944bfca4381409f26a7986 |
77 | ″ | schema:publisher | N2b8d4e27d3524e49bcc8dcaf4a6b0b94 |
78 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026216629 |
79 | ″ | ″ | https://doi.org/10.1007/978-3-642-14980-1_54 |
80 | ″ | schema:sdDatePublished | 2022-05-20T07:46 |
81 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
82 | ″ | schema:sdPublisher | Na7f1ed00ca4a40f9a105f1a774c4ee93 |
83 | ″ | schema:url | https://doi.org/10.1007/978-3-642-14980-1_54 |
84 | ″ | sgo:license | sg:explorer/license/ |
85 | ″ | sgo:sdDataset | chapters |
86 | ″ | rdf:type | schema:Chapter |
87 | N04c9044d5ff745989addd85f07d3ffed | rdf:first | N8a08b2ca918b44bc88a2a90d2d929070 |
88 | ″ | rdf:rest | Nfad680de49024fd3a1abf1f63cddc585 |
89 | N087b0b6f2a814bc6bb66dd63ed78470e | rdf:first | N7f0aa9522889436a9321ed19ad3e9a5e |
90 | ″ | rdf:rest | rdf:nil |
91 | N15b58bd18943487c865a317a00897506 | rdf:first | sg:person.015053427343.37 |
92 | ″ | rdf:rest | rdf:nil |
93 | N2b8d4e27d3524e49bcc8dcaf4a6b0b94 | schema:name | Springer Nature |
94 | ″ | rdf:type | schema:Organisation |
95 | N631dc508ba5b4c1f94503b54f7be77d3 | schema:familyName | Hancock |
96 | ″ | schema:givenName | Edwin R. |
97 | ″ | rdf:type | schema:Person |
98 | N7e8c898fd44c405a8b60c40d70c01c58 | schema:familyName | Wilson |
99 | ″ | schema:givenName | Richard C. |
100 | ″ | rdf:type | schema:Person |
101 | N7f0aa9522889436a9321ed19ad3e9a5e | schema:familyName | Escolano |
102 | ″ | schema:givenName | Francisco |
103 | ″ | rdf:type | schema:Person |
104 | N886a6b3bac364362aa9f5a6f337b2b7b | schema:name | dimensions_id |
105 | ″ | schema:value | pub.1026216629 |
106 | ″ | rdf:type | schema:PropertyValue |
107 | N8a08b2ca918b44bc88a2a90d2d929070 | schema:familyName | Windeatt |
108 | ″ | schema:givenName | Terry |
109 | ″ | rdf:type | schema:Person |
110 | Na7f1ed00ca4a40f9a105f1a774c4ee93 | schema:name | Springer Nature - SN SciGraph project |
111 | ″ | rdf:type | schema:Organization |
112 | Nb0a043308a8a497699780699696640aa | rdf:first | N631dc508ba5b4c1f94503b54f7be77d3 |
113 | ″ | rdf:rest | Nb223efe456e34135ab0e94fcc3e93f72 |
114 | Nb223efe456e34135ab0e94fcc3e93f72 | rdf:first | N7e8c898fd44c405a8b60c40d70c01c58 |
115 | ″ | rdf:rest | N04c9044d5ff745989addd85f07d3ffed |
116 | Nb3964fb59da84102a6f0e4686f377ac3 | rdf:first | sg:person.013122633325.50 |
117 | ″ | rdf:rest | N15b58bd18943487c865a317a00897506 |
118 | Ncf92e3bf880441068495dc67ab344bed | schema:isbn | 978-3-642-14979-5 |
119 | ″ | ″ | 978-3-642-14980-1 |
120 | ″ | schema:name | Structural, Syntactic, and Statistical Pattern Recognition |
121 | ″ | rdf:type | schema:Book |
122 | Neacb6ad1e7944bfca4381409f26a7986 | schema:name | doi |
123 | ″ | schema:value | 10.1007/978-3-642-14980-1_54 |
124 | ″ | rdf:type | schema:PropertyValue |
125 | Nf48426218ad141678a8ef358867a2300 | schema:familyName | Ulusoy |
126 | ″ | schema:givenName | Ilkay |
127 | ″ | rdf:type | schema:Person |
128 | Nfad680de49024fd3a1abf1f63cddc585 | rdf:first | Nf48426218ad141678a8ef358867a2300 |
129 | ″ | rdf:rest | N087b0b6f2a814bc6bb66dd63ed78470e |
130 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Information and Computing Sciences |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
134 | ″ | schema:name | Artificial Intelligence and Image Processing |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | sg:person.013122633325.50 | schema:affiliation | grid-institutes:grid.28848.3e |
137 | ″ | schema:familyName | Erdogmus |
138 | ″ | schema:givenName | Nesli |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013122633325.50 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.015053427343.37 | schema:affiliation | grid-institutes:grid.28848.3e |
142 | ″ | schema:familyName | Dugelay |
143 | ″ | schema:givenName | Jean-Luc |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37 |
145 | ″ | rdf:type | schema:Person |
146 | grid-institutes:grid.28848.3e | schema:alternateName | Eurecom, Multimedia Communications Department, 2229 Routes des Crêtes, 06904, Sophia Antipolis, France |
147 | ″ | schema:name | Eurecom, Multimedia Communications Department, 2229 Routes des Crêtes, 06904, Sophia Antipolis, France |
148 | ″ | rdf:type | schema:Organization |