Contrast Enhancement and Metrics for Biometric Vein Pattern Recognition View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Martin Aastrup Olsen , Daniel Hartung , Christoph Busch , Rasmus Larsen

ABSTRACT

Finger vein pattern recognition is a biometric modality that uses features found in the blood vessel structure of the fingers. Vein pattern images are captured using a specialized infrared sensitive sensor which due to physical properties of the hemoglobin present in the blood stream give rise to a slight intensity difference between veins and tissue. We investigate five different contrast enhancement algorithms, which range from high to low computational complexity, and evaluate the performance by using five different quantitative contrast measuring methods. More... »

PAGES

425-434

Book

TITLE

Advanced Intelligent Computing Theories and Applications

ISBN

978-3-642-14830-9
978-3-642-14831-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-14831-6_56

DOI

http://dx.doi.org/10.1007/978-3-642-14831-6_56

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008836034


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Denmark", 
          "id": "https://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Informatics and Mathematical Modelling, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olsen", 
        "givenName": "Martin Aastrup", 
        "id": "sg:person.016501712466.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016501712466.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Norwegian Information Security laboratory, Gj\u00f8vik University College, Gj\u00f8vik, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hartung", 
        "givenName": "Daniel", 
        "id": "sg:person.07407741575.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07407741575.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Norwegian Information Security laboratory, Gj\u00f8vik University College, Gj\u00f8vik, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Busch", 
        "givenName": "Christoph", 
        "id": "sg:person.011143356603.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143356603.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Denmark", 
          "id": "https://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Informatics and Mathematical Modelling, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larsen", 
        "givenName": "Rasmus", 
        "id": "sg:person.015322706631.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015322706631.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.imavis.2009.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007367269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2007.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027855774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.7.002032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065166457"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Finger vein pattern recognition is a biometric modality that uses features found in the blood vessel structure of the fingers. Vein pattern images are captured using a specialized infrared sensitive sensor which due to physical properties of the hemoglobin present in the blood stream give rise to a slight intensity difference between veins and tissue. We investigate five different contrast enhancement algorithms, which range from high to low computational complexity, and evaluate the performance by using five different quantitative contrast measuring methods.", 
    "editor": [
      {
        "familyName": "Huang", 
        "givenName": "De-Shuang", 
        "type": "Person"
      }, 
      {
        "familyName": "McGinnity", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Heutte", 
        "givenName": "Laurent", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Xiao-Ping", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-14831-6_56", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-14830-9", 
        "978-3-642-14831-6"
      ], 
      "name": "Advanced Intelligent Computing Theories and Applications", 
      "type": "Book"
    }, 
    "name": "Contrast Enhancement and Metrics for Biometric Vein Pattern Recognition", 
    "pagination": "425-434", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008836034"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-14831-6_56"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2a1935b189d7c7299156fa549aff8dabb56c4f1a1f9a31c993bd8826b0ca9508"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-14831-6_56", 
      "https://app.dimensions.ai/details/publication/pub.1008836034"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54017_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-14831-6_56"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14831-6_56'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14831-6_56'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14831-6_56'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14831-6_56'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-14831-6_56 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N9b7ebd6a2b86400080852c75e6fcbbef
4 schema:citation https://doi.org/10.1016/j.imavis.2009.04.011
5 https://doi.org/10.1016/j.patcog.2007.07.012
6 https://doi.org/10.1364/josaa.7.002032
7 schema:datePublished 2010
8 schema:datePublishedReg 2010-01-01
9 schema:description Finger vein pattern recognition is a biometric modality that uses features found in the blood vessel structure of the fingers. Vein pattern images are captured using a specialized infrared sensitive sensor which due to physical properties of the hemoglobin present in the blood stream give rise to a slight intensity difference between veins and tissue. We investigate five different contrast enhancement algorithms, which range from high to low computational complexity, and evaluate the performance by using five different quantitative contrast measuring methods.
10 schema:editor N79697a9ffb4c44d6a193351269f6d737
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nf5b64730fb56413483c0f1d29c2a3298
15 schema:name Contrast Enhancement and Metrics for Biometric Vein Pattern Recognition
16 schema:pagination 425-434
17 schema:productId N384fcda35931473a882b07850d78809c
18 N9bb4fb2f064e4ef9a368ac129a987f59
19 Na4ce5c1ba6344461bca9c639e0707c70
20 schema:publisher Nb9ea8777f1754562a71f7e0cd46ee488
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008836034
22 https://doi.org/10.1007/978-3-642-14831-6_56
23 schema:sdDatePublished 2019-04-16T08:15
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N8ea537b12e3649bd886db0f811a5163a
26 schema:url https://link.springer.com/10.1007%2F978-3-642-14831-6_56
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N2567510512014e1b97173dc6fa24de03 rdf:first N6a6e3781c33448bb977f8f9f7170255b
31 rdf:rest N2a22f708749e4b0db305bbf030724294
32 N2854e2cdf90a45bca324d7d0ff0ca355 rdf:first sg:person.015322706631.03
33 rdf:rest rdf:nil
34 N2a22f708749e4b0db305bbf030724294 rdf:first Nd4a65b0581894af48151b031ea05ac09
35 rdf:rest Nc702da7cb01a44efadaab9825b8a96bf
36 N384fcda35931473a882b07850d78809c schema:name doi
37 schema:value 10.1007/978-3-642-14831-6_56
38 rdf:type schema:PropertyValue
39 N5c476eb3ba1f40ef8eb7607baa4a589a schema:familyName Zhang
40 schema:givenName Xiao-Ping
41 rdf:type schema:Person
42 N5d0ae8a71ad94dd0846e7aa4849f9355 rdf:first sg:person.07407741575.61
43 rdf:rest N76d850f216644691a921addecf3bca3d
44 N6a6e3781c33448bb977f8f9f7170255b schema:familyName McGinnity
45 schema:givenName Martin
46 rdf:type schema:Person
47 N76d850f216644691a921addecf3bca3d rdf:first sg:person.011143356603.69
48 rdf:rest N2854e2cdf90a45bca324d7d0ff0ca355
49 N79697a9ffb4c44d6a193351269f6d737 rdf:first Na8f7ac592a8741a89f394faf57e221a4
50 rdf:rest N2567510512014e1b97173dc6fa24de03
51 N8ea537b12e3649bd886db0f811a5163a schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N9b7ebd6a2b86400080852c75e6fcbbef rdf:first sg:person.016501712466.40
54 rdf:rest N5d0ae8a71ad94dd0846e7aa4849f9355
55 N9bb4fb2f064e4ef9a368ac129a987f59 schema:name readcube_id
56 schema:value 2a1935b189d7c7299156fa549aff8dabb56c4f1a1f9a31c993bd8826b0ca9508
57 rdf:type schema:PropertyValue
58 Na4ce5c1ba6344461bca9c639e0707c70 schema:name dimensions_id
59 schema:value pub.1008836034
60 rdf:type schema:PropertyValue
61 Na8f7ac592a8741a89f394faf57e221a4 schema:familyName Huang
62 schema:givenName De-Shuang
63 rdf:type schema:Person
64 Nb9ea8777f1754562a71f7e0cd46ee488 schema:location Berlin, Heidelberg
65 schema:name Springer Berlin Heidelberg
66 rdf:type schema:Organisation
67 Nc702da7cb01a44efadaab9825b8a96bf rdf:first N5c476eb3ba1f40ef8eb7607baa4a589a
68 rdf:rest rdf:nil
69 Nd4a65b0581894af48151b031ea05ac09 schema:familyName Heutte
70 schema:givenName Laurent
71 rdf:type schema:Person
72 Nf5b64730fb56413483c0f1d29c2a3298 schema:isbn 978-3-642-14830-9
73 978-3-642-14831-6
74 schema:name Advanced Intelligent Computing Theories and Applications
75 rdf:type schema:Book
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
80 schema:name Computation Theory and Mathematics
81 rdf:type schema:DefinedTerm
82 sg:person.011143356603.69 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
83 schema:familyName Busch
84 schema:givenName Christoph
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143356603.69
86 rdf:type schema:Person
87 sg:person.015322706631.03 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
88 schema:familyName Larsen
89 schema:givenName Rasmus
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015322706631.03
91 rdf:type schema:Person
92 sg:person.016501712466.40 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
93 schema:familyName Olsen
94 schema:givenName Martin Aastrup
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016501712466.40
96 rdf:type schema:Person
97 sg:person.07407741575.61 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
98 schema:familyName Hartung
99 schema:givenName Daniel
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07407741575.61
101 rdf:type schema:Person
102 https://doi.org/10.1016/j.imavis.2009.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007367269
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.patcog.2007.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027855774
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1364/josaa.7.002032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065166457
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.5170.3 schema:alternateName Technical University of Denmark
109 schema:name Department of Informatics and Mathematical Modelling, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
110 rdf:type schema:Organization
111 https://www.grid.ac/institutes/grid.5947.f schema:alternateName Norwegian University of Science and Technology
112 schema:name Norwegian Information Security laboratory, Gjøvik University College, Gjøvik, Norway
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...