Ontology type: schema:Chapter
2010-10-14
AUTHORSP. Barthès , J. Buard , B. de Massy
ABSTRACTDuring meiosis, recombination is induced to promote connections between homologous chromosomes, thereby ensuring faithful chromosome segregation. These connections result from reciprocal recombination events or crossovers. Absence or defects of recombination can lead to genome instability, chromosome nondisjunction, aneuploid gametes, or reduced fertility. Recombination events are therefore highly regulated through mechanisms that are still poorly understood. The role of epigenetic modifications in meiotic recombination is suggested by several observations, particularly by the differences between male and female recombination as well as by interindividual variations in crossover rates. In this review, we describe features of meiotic recombination that might involve epigenetic controls. We then present the epigenetic marks and modifiers known to occur or to play a role during meiotic prophase when recombination takes place. Direct evidence of a functional link between histone modifications and recombination is highlighted by a recent analysis of the distribution of recombination showing that the protein PRDM9 targets chromatin modifications to specific sites in the genome where initiation of meiotic recombination takes place. More... »
PAGES119-156
Epigenetics and Human Reproduction
ISBN
978-3-642-14772-2
978-3-642-14773-9
http://scigraph.springernature.com/pub.10.1007/978-3-642-14773-9_6
DOIhttp://dx.doi.org/10.1007/978-3-642-14773-9_6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1025323618
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut de G\u00e9n\u00e9tique Humaine, UPR1142, CNRS, 141 rue de la Cardonille, 34396, Montpellier cedex 5, France",
"id": "http://www.grid.ac/institutes/grid.462268.c",
"name": [
"Institut de G\u00e9n\u00e9tique Humaine, UPR1142, CNRS, 141 rue de la Cardonille, 34396, Montpellier cedex 5, France"
],
"type": "Organization"
},
"familyName": "Barth\u00e8s",
"givenName": "P.",
"id": "sg:person.01052652570.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052652570.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut de G\u00e9n\u00e9tique Humaine, UPR1142, CNRS, 141 rue de la Cardonille, 34396, Montpellier cedex 5, France",
"id": "http://www.grid.ac/institutes/grid.462268.c",
"name": [
"Institut de G\u00e9n\u00e9tique Humaine, UPR1142, CNRS, 141 rue de la Cardonille, 34396, Montpellier cedex 5, France"
],
"type": "Organization"
},
"familyName": "Buard",
"givenName": "J.",
"id": "sg:person.0743456141.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743456141.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut de G\u00e9n\u00e9tique Humaine, UPR1142, CNRS, 141 rue de la Cardonille, 34396, Montpellier cedex 5, France",
"id": "http://www.grid.ac/institutes/grid.462268.c",
"name": [
"Institut de G\u00e9n\u00e9tique Humaine, UPR1142, CNRS, 141 rue de la Cardonille, 34396, Montpellier cedex 5, France"
],
"type": "Organization"
},
"familyName": "de Massy",
"givenName": "B.",
"id": "sg:person.0701375000.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701375000.51"
],
"type": "Person"
}
],
"datePublished": "2010-10-14",
"datePublishedReg": "2010-10-14",
"description": "During meiosis, recombination is induced to promote connections between homologous chromosomes, thereby ensuring faithful chromosome segregation. These connections result from reciprocal recombination events or crossovers. Absence or defects of recombination can lead to genome instability, chromosome nondisjunction, aneuploid gametes, or reduced fertility. Recombination events are therefore highly regulated through mechanisms that are still poorly understood. The role of epigenetic modifications in meiotic recombination is suggested by several observations, particularly by the differences between male and female recombination as well as by interindividual variations in crossover rates. In this review, we describe features of meiotic recombination that might involve epigenetic controls. We then present the epigenetic marks and modifiers known to occur or to play a role during meiotic prophase when recombination takes place. Direct evidence of a functional link between histone modifications and recombination is highlighted by a recent analysis of the distribution of recombination showing that the protein PRDM9 targets chromatin modifications to specific sites in the genome where initiation of meiotic recombination takes place.",
"editor": [
{
"familyName": "Rousseaux",
"givenName": "Sophie",
"type": "Person"
},
{
"familyName": "Khochbin",
"givenName": "Saadi",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-14773-9_6",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-14772-2",
"978-3-642-14773-9"
],
"name": "Epigenetics and Human Reproduction",
"type": "Book"
},
"keywords": [
"meiotic recombination",
"recombination events",
"faithful chromosome segregation",
"reciprocal recombination events",
"distribution of recombination",
"chromatin modifications",
"chromosome segregation",
"epigenetic marks",
"epigenetic control",
"genome instability",
"histone modifications",
"homologous chromosomes",
"aneuploid gametes",
"epigenetic modifications",
"chromosome nondisjunction",
"female recombination",
"meiotic prophase",
"epigenetic factors",
"functional link",
"recombination",
"specific sites",
"direct evidence",
"recent analysis",
"genome",
"meiosis",
"chromosomes",
"mammals",
"prophase",
"gametes",
"nondisjunction",
"interindividual variation",
"regulation",
"modification",
"role",
"crossover rate",
"segregation",
"fertility",
"sites",
"marks",
"events",
"mechanism",
"initiation",
"modifiers",
"absence",
"variation",
"defects",
"males",
"evidence",
"factors",
"analysis",
"distribution",
"link",
"review",
"control",
"observations",
"differences",
"features",
"place",
"instability",
"rate",
"connection",
"crossover"
],
"name": "Epigenetic Factors and Regulation of Meiotic Recombination in Mammals",
"pagination": "119-156",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1025323618"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-14773-9_6"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-14773-9_6",
"https://app.dimensions.ai/details/publication/pub.1025323618"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:43",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_21.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-14773-9_6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14773-9_6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14773-9_6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14773-9_6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14773-9_6'
This table displays all metadata directly associated to this object as RDF triples.
141 TRIPLES
23 PREDICATES
87 URIs
80 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-14773-9_6 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0604 |
3 | ″ | schema:author | N40bd7c0bfae543ea90a7c0f72a6230ae |
4 | ″ | schema:datePublished | 2010-10-14 |
5 | ″ | schema:datePublishedReg | 2010-10-14 |
6 | ″ | schema:description | During meiosis, recombination is induced to promote connections between homologous chromosomes, thereby ensuring faithful chromosome segregation. These connections result from reciprocal recombination events or crossovers. Absence or defects of recombination can lead to genome instability, chromosome nondisjunction, aneuploid gametes, or reduced fertility. Recombination events are therefore highly regulated through mechanisms that are still poorly understood. The role of epigenetic modifications in meiotic recombination is suggested by several observations, particularly by the differences between male and female recombination as well as by interindividual variations in crossover rates. In this review, we describe features of meiotic recombination that might involve epigenetic controls. We then present the epigenetic marks and modifiers known to occur or to play a role during meiotic prophase when recombination takes place. Direct evidence of a functional link between histone modifications and recombination is highlighted by a recent analysis of the distribution of recombination showing that the protein PRDM9 targets chromatin modifications to specific sites in the genome where initiation of meiotic recombination takes place. |
7 | ″ | schema:editor | N69600d4d5c42404ba56aa4e2f2e5354b |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nb193d0a3c8d14b87a916089cda72af25 |
12 | ″ | schema:keywords | absence |
13 | ″ | ″ | analysis |
14 | ″ | ″ | aneuploid gametes |
15 | ″ | ″ | chromatin modifications |
16 | ″ | ″ | chromosome nondisjunction |
17 | ″ | ″ | chromosome segregation |
18 | ″ | ″ | chromosomes |
19 | ″ | ″ | connection |
20 | ″ | ″ | control |
21 | ″ | ″ | crossover |
22 | ″ | ″ | crossover rate |
23 | ″ | ″ | defects |
24 | ″ | ″ | differences |
25 | ″ | ″ | direct evidence |
26 | ″ | ″ | distribution |
27 | ″ | ″ | distribution of recombination |
28 | ″ | ″ | epigenetic control |
29 | ″ | ″ | epigenetic factors |
30 | ″ | ″ | epigenetic marks |
31 | ″ | ″ | epigenetic modifications |
32 | ″ | ″ | events |
33 | ″ | ″ | evidence |
34 | ″ | ″ | factors |
35 | ″ | ″ | faithful chromosome segregation |
36 | ″ | ″ | features |
37 | ″ | ″ | female recombination |
38 | ″ | ″ | fertility |
39 | ″ | ″ | functional link |
40 | ″ | ″ | gametes |
41 | ″ | ″ | genome |
42 | ″ | ″ | genome instability |
43 | ″ | ″ | histone modifications |
44 | ″ | ″ | homologous chromosomes |
45 | ″ | ″ | initiation |
46 | ″ | ″ | instability |
47 | ″ | ″ | interindividual variation |
48 | ″ | ″ | link |
49 | ″ | ″ | males |
50 | ″ | ″ | mammals |
51 | ″ | ″ | marks |
52 | ″ | ″ | mechanism |
53 | ″ | ″ | meiosis |
54 | ″ | ″ | meiotic prophase |
55 | ″ | ″ | meiotic recombination |
56 | ″ | ″ | modification |
57 | ″ | ″ | modifiers |
58 | ″ | ″ | nondisjunction |
59 | ″ | ″ | observations |
60 | ″ | ″ | place |
61 | ″ | ″ | prophase |
62 | ″ | ″ | rate |
63 | ″ | ″ | recent analysis |
64 | ″ | ″ | reciprocal recombination events |
65 | ″ | ″ | recombination |
66 | ″ | ″ | recombination events |
67 | ″ | ″ | regulation |
68 | ″ | ″ | review |
69 | ″ | ″ | role |
70 | ″ | ″ | segregation |
71 | ″ | ″ | sites |
72 | ″ | ″ | specific sites |
73 | ″ | ″ | variation |
74 | ″ | schema:name | Epigenetic Factors and Regulation of Meiotic Recombination in Mammals |
75 | ″ | schema:pagination | 119-156 |
76 | ″ | schema:productId | N483b0fe76c044d2f8d22f3d34bc3598d |
77 | ″ | ″ | N9aaf27b4e632407ba153d9a04c0d1041 |
78 | ″ | schema:publisher | Nb281cde963ca4e04b83bb70851f433f4 |
79 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025323618 |
80 | ″ | ″ | https://doi.org/10.1007/978-3-642-14773-9_6 |
81 | ″ | schema:sdDatePublished | 2022-05-20T07:43 |
82 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
83 | ″ | schema:sdPublisher | N8efba34c53394540af0f690f72d32ecd |
84 | ″ | schema:url | https://doi.org/10.1007/978-3-642-14773-9_6 |
85 | ″ | sgo:license | sg:explorer/license/ |
86 | ″ | sgo:sdDataset | chapters |
87 | ″ | rdf:type | schema:Chapter |
88 | N40bd7c0bfae543ea90a7c0f72a6230ae | rdf:first | sg:person.01052652570.37 |
89 | ″ | rdf:rest | N67078112105f44268f374d89e3666dbe |
90 | N483b0fe76c044d2f8d22f3d34bc3598d | schema:name | doi |
91 | ″ | schema:value | 10.1007/978-3-642-14773-9_6 |
92 | ″ | rdf:type | schema:PropertyValue |
93 | N67078112105f44268f374d89e3666dbe | rdf:first | sg:person.0743456141.18 |
94 | ″ | rdf:rest | Na8930a505a17478a91ca1081db01c38c |
95 | N69600d4d5c42404ba56aa4e2f2e5354b | rdf:first | N8dd0e7c4280744bebad50fb3b6e32ca4 |
96 | ″ | rdf:rest | Nc049a653600e4f05af9882eb2eeb2311 |
97 | N8dd0e7c4280744bebad50fb3b6e32ca4 | schema:familyName | Rousseaux |
98 | ″ | schema:givenName | Sophie |
99 | ″ | rdf:type | schema:Person |
100 | N8efba34c53394540af0f690f72d32ecd | schema:name | Springer Nature - SN SciGraph project |
101 | ″ | rdf:type | schema:Organization |
102 | N9aaf27b4e632407ba153d9a04c0d1041 | schema:name | dimensions_id |
103 | ″ | schema:value | pub.1025323618 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | Na8930a505a17478a91ca1081db01c38c | rdf:first | sg:person.0701375000.51 |
106 | ″ | rdf:rest | rdf:nil |
107 | Nb193d0a3c8d14b87a916089cda72af25 | schema:isbn | 978-3-642-14772-2 |
108 | ″ | ″ | 978-3-642-14773-9 |
109 | ″ | schema:name | Epigenetics and Human Reproduction |
110 | ″ | rdf:type | schema:Book |
111 | Nb281cde963ca4e04b83bb70851f433f4 | schema:name | Springer Nature |
112 | ″ | rdf:type | schema:Organisation |
113 | Nc049a653600e4f05af9882eb2eeb2311 | rdf:first | Nf98b67ebd43c4cd4afb5cc2f6612ec3e |
114 | ″ | rdf:rest | rdf:nil |
115 | Nf98b67ebd43c4cd4afb5cc2f6612ec3e | schema:familyName | Khochbin |
116 | ″ | schema:givenName | Saadi |
117 | ″ | rdf:type | schema:Person |
118 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Biological Sciences |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Genetics |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | sg:person.01052652570.37 | schema:affiliation | grid-institutes:grid.462268.c |
125 | ″ | schema:familyName | Barthès |
126 | ″ | schema:givenName | P. |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052652570.37 |
128 | ″ | rdf:type | schema:Person |
129 | sg:person.0701375000.51 | schema:affiliation | grid-institutes:grid.462268.c |
130 | ″ | schema:familyName | de Massy |
131 | ″ | schema:givenName | B. |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701375000.51 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.0743456141.18 | schema:affiliation | grid-institutes:grid.462268.c |
135 | ″ | schema:familyName | Buard |
136 | ″ | schema:givenName | J. |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743456141.18 |
138 | ″ | rdf:type | schema:Person |
139 | grid-institutes:grid.462268.c | schema:alternateName | Institut de Génétique Humaine, UPR1142, CNRS, 141 rue de la Cardonille, 34396, Montpellier cedex 5, France |
140 | ″ | schema:name | Institut de Génétique Humaine, UPR1142, CNRS, 141 rue de la Cardonille, 34396, Montpellier cedex 5, France |
141 | ″ | rdf:type | schema:Organization |